[目的/意义] 挖掘数字图书馆用户的认知结构,识别其真实知识需求,以期为数字图书馆开展有针对性的个性化知识服务提供依据。[方法/过程] 借鉴认知心理学中的激活扩散理论深层次剖析用户的认知过程,根据用户在数字图书馆上的浏览、检索等认知实践行为研究用户认知,并挖掘出用户的认知结构。[结果/结论] 实验表明,基于激活扩散理论的认知结构挖掘方法识别的用户认知结构中主题概念的准确率和主题概念的排序一致性都达到较高水平,说明本文提出的认知结构挖掘方法对识别用户的认知结构具有有效性。
[Purpose/significance] Constructing the user's cognitive structure, and recognizing the digital library users'real knowledge needs, this paper aims to provide the basis for the personalized knowledge service of digital library. [Method/process] The paper uses the spreading activation theory of cognitive psychology to analyze the cognitive procedure of users,and studies the users' cognitive based on their browsing behavior information in the digital library. [Result/conclusion] This paper's experiments show that whether the index of recPrecision or the index of ranPrecision reach a high level which proves the validity of the digital library user's cognitive structure mining method based on spreading activation theory.
[1] 王忠义,夏立新,石义金,等.数字图书馆中层关联数据的创建与发布[J].现代图书情报技术,2013(5):28-33.
[2] 邹海,郇秀花.基于认知广度和深度的个性化信息检索模型[J].微型机与应用,2011(13):88-91.
[3] 梁宁建.当代认知心理学[M].上海:上海教育出版社, 2014:241-244.
[4] BRELSFORDJ W, SHIFFRIN R M, ATKINSON R C. Multiple reinforcement effects in short-termmemory[J]. British journal of mathematical and statistical psychology, 1968, 21(1):1-19.
[5] 戈尔茨坦.认知心理学[M].张明,译.北京:中国轻工业出社,2015:202-358.
[6] COLLINS A, QUILLIANM.Retrieval times from semantics memory[J].Journal of verbal learning and verbal behavior,1969,8(2):240-247.
[7] 索尔所. 认知心理学[M].邵志芳,译.上海:上海人民出版社, 2008:240-245.
[8] COLLINSA M, LOFTUS E F. A spreading activation theory of semantic processing[J].Psychological review, 1975, 82(6):407-428.
[9] CRESTANIF.Application of spreading activation techniques in information retrieval[J].Artificial intelligence review, 1997, 11(6):453-482.
[10] 邹晓顺,王晓芬,邓珞华.图书情报应用数学[M].北京:国家图书馆出版社,2012:101-113.
[11] 何忠秀,王霜,安礼成.基于向量空间的网页内容相似度计算方法研究[J].计算机与现代化,2010(9):53-55,58.
[12] 李连,朱爱红,苏涛.一种改进的基于向量空间文本相似度算法的研究与实现[J].计算机应用与软件,2012(2):282-284.
[13] 李海蓉. 基于概念向量空间的文档语义分类模型研究[J].图书情报工作,2011,55(24):106-111,26.
[14] BLEI D M, NG A Y, JORDAN M I. Latent dirichletallocation[J]. Journal of machine learning research, 2003,1(3):993-1022.
[15] KRESTEL R, FANKHAUSER P, NEJDL W. Latent dirichlet allocation for tag recommendation[C]// Proceedings of the third ACM conference on recommender systems.New York:ACM, 2009: 61-68.
[16] 石晶,李万龙. 基于LDA模型的主题词抽取方法[J].计算机工程,2010(19):81-83.
[17] 易明.基于Web挖掘的个性化信息推荐[M].北京:科学出版社,2010:55-72.
[18] COOLEY R, MOBASHER B, SRIVASTAVAJ.Data preparation for mining World Wide Web browsing patterns[J]. Knowledge and information systems,1999,1(1):53-62.
[19] 王振超.词汇测试:词语联想法[D].杭州:浙江大学,2006.