[目的/意义]通借通还服务是多校区高校图书馆流通的基本服务,利用通借通还数据,本研究试图从读者需求的角度提出一个能将馆藏资源动态优化的模式。[方法/过程]在考察国内外对于通借通还的研究现状和方法的基础上,借鉴二部图匹配和推荐系统一些相关研究成果,基于网络推断算法提出一个针对高校图书馆通借服务进行优化的模型,并以苏州大学图书馆2013年的借阅情况为训练集进行馆藏优化,使用2014-2015年的约2 469条通借数据对模型的效果进行检验。[结果/结论]分配模型对于预测未来的通借需求有一定效果,通过对馆藏进行优化,可提高图书使用效率,降低配送成本。
[Purpose/significance] The inter-library loaning (ILL) service is essential to multi-academic campus universities' library. By using ILL data, the paper will build a dynamic collection optimizing mode based on readers' demands.[Method/process] Firstly it examined the status quo and methods of ILL. Then, some results of bipartite matching and recommendation such as network-based inferencing (NBI) were referred to. Based on these, it built a model aiming to optimize collections of academic libraries. With the loaning data of Soochow University library during 2013 as the training data, an optimizing case was performed. 2469 of the inter-library loaning data during 2014 was used for testing the model's effects.[Result/conclusion] Through the optimization of the collection,the efficiency of using could be improved and the delivery cost will be reduced.
[1] 李怀栋. 互联网背景下公共图书馆的服务创新[J]. 经济研究导刊, 2016, 12(25):154-161.
[2] WIKIPEDIA. interlibrary loan[EB/OL].[2017-01-15]. https://en.wikipedia.org/wiki/Interlibrary_loan.
[3] ALA. Interlibrary loan code for the united states[EB/OL].[2017-02-16]. http://www.ala.org/rusa/guidelines/interlibrary.
[4] LANCASTER F W. The evaluation of library services:a concise review of the existing literature[J]. Investigación bibliotecológica, 1995, 9(18):123-128,134.
[5] Deutsches Institut für Normung. Information and documentation——library performance indicators:ISO 11620:2014[S/OL].[2017-03-02] https://www.iso.org/standard/56755.html.
[6] STEIN J. Measuring the performance of ill and document supply:1986 to 1998[J]. Performance measurement and metrics, 2001, 2(1):11-72.
[7] APA. Interlibrary loan practices handbook[M]. the 3rd edition. Chicago:ALA editions, 2011:79-82.
[8] OCHOLA J N. Use of circulation statistics and interlibrary loan data in collection management[J]. Collection management, 2002, 27(1):1-14.
[9] STEVENS R E. A study of interlibrary loan[J]. College & research libraries, 1974, 35(5):336-343.
[10] VAN DEN HOOGEN S, PARROTT D. Communication, collaboration and cooperation:an evaluation of Nova Scotia's borrow anywhere, return anywhere (BARA) multi-type library initiative[J]. The journal of academic librarianship, 2012, 38(6):321-325.
[11] PERNOT E, ROODHOOFT F, VAN DEN ABBEELE A. Time-driven activity-based costing for inter-library services:a case study in a university[J]. The journal of academic librarianship, 2007,33(5):551-560.
[12] EASLEY D, KLEINBERG K. Networks, crowds, and markets[M]. Cambridge:Cambridge University Press, 2010.
[13] WASSERMAN S, FAUST K. Social network analysis:methods and applications[M]. Cambridge:Cambridge University Press, 1994.
[14] 李洋. 公共图书馆通借通还配送模式研究[D].杭州:浙江大学, 2010.
[15] GLOVER C, LANGSTAFF G. Floating collections within a consortium:or, does it matter where the materials are shelved?[J]. PNLA quarterly, 2006, 71(1):6-12.
[16] JALALIMANESH A, YAGHOUBI S M. Application of social network analysis in interlibrary loan services[J]. Webology, 2013, 10(1):3-8.
[17] 刘建国, 周涛, 汪秉宏. 个性化推荐系统的研究进展[J]. 自然科学进展, 2008, 19(1):1-15.
[18] 何绯娟, 缪相林, 许大炜, 等. 二部图的个性化图书推荐方法[J]. 计算机技术与发展, 2015(5):1-4.
[19] LI N N, ZHANG N. The bipartite network study of the library book lending system[J]. Complex sciences, 2009, 75(4):773-782.
[20] 汤胤, 欧治花, 陈杏惠, 等. 兴趣社交网络中的供需匹配研究:以豆瓣网为例[J]. 管理工程学报, 2015(2):41-50.
[21] 蓝冬梅. 大数据量图书下多数据集的二部图多样化推荐[J]. 情报理论与实践, 2016, 49(2):69-72.
[22] 房小可. 一种融合情境因素的社会化信息推荐新方法[J]. 图书情报工作,2015,59(22):105-111,129.
[23] ZHOU T, REN J, MEDO M, et al. Bipartite network projection and personal recommendation[J]. Phys Rev E, 2007, 76(4):46-115.
[24] 张新猛, 蒋盛益. 基于加权二部图的个性化推荐算法[J]. 计算机应用, 2012(3):654-657,678.
[25] 苏州大学图书馆. 借书还书[EB/OL].[2016-08-23]. http://library.suda.edu.cn/menu_detail.jsp?id=7&iType_id=2-5.
[26] 苏州大学档案馆. 历年年鉴[EB/OL].[2017-02-15]. http://archives.suda.edu.cn/js_queryMore.action?id=48.
[27] ZHOU T, JIANG L L, SU R Q, et al. Effect of initial configuration on network-based recommendation[J]. 2013, 81(5):1-4.