情报研究

基于信息熵的新媒体环境下网络节点影响力研究——以微信公众号为例

  • 邢云菲 ,
  • 王晰巍 ,
  • 韩雪雯 ,
  • 张长亮
展开
  • 1. 吉林大学管理学院信息管理系 长春 130022;
    2. 吉林大学大数据管理研究中心 长春 130022
邢云菲(ORCID:0000-0002-5512-4364),博士研究生,E-mail:787397613@qq.com;王晰巍(ORCID:0000-0002-5850-0126),教授,博士生导师;韩雪雯(ORCID:0000-0001-8477-1969),本科生;张长亮(ORCID:0000-0001-7676-7302),博士研究生。

收稿日期: 2017-08-02

  修回日期: 2017-09-07

  网络出版日期: 2018-03-05

基金资助

本文系国家自然科学基金面上项目"信息生态视角下新媒体信息消费行为机理及服务模式创新研究"(项目编号:71673108)和吉林大学高峰学科(群)建设项目研究成果之一。

Research on the Influence of Network Nodes in New Media Environment Based on Information Entropy: A Case Study of WeChat

  • Xing Yunfei ,
  • Wang Xiwei ,
  • Zhang liu ,
  • Li Shimeng
Expand
  • 1. School of Management, Jilin University, Changchun 130022;
    2. Big Data Management Research Center, Jilin University, Changchun 130022

Received date: 2017-08-02

  Revised date: 2017-09-07

  Online published: 2018-03-05

摘要

[目的/意义]对新媒体环境下网络节点影响力进行研究,能够深入剖析信息传播规律,从而有助于采取针对性措施对信息传播进行合理控制。[方法/过程]基于信息熵理论构建新媒体环境下网络节点影响力模型,以微信公众号为例进行节点影响力测算,对节点直接影响力、间接影响力和综合影响力进行深入分析,最后运用Matlab软件对所构建模型进行仿真分析。[结果/结论]新媒体环境下网络节点综合影响力随着连接节点数量和节点间互动频率增加而增大,直接影响力和间接影响力也以不同幅度增长,但当间接影响力信息熵值超过100时,直接影响力成为影响节点综合影响力的主要因素。

本文引用格式

邢云菲 , 王晰巍 , 韩雪雯 , 张长亮 . 基于信息熵的新媒体环境下网络节点影响力研究——以微信公众号为例[J]. 图书情报工作, 2018 , 62(5) : 76 -86 . DOI: 10.13266/j.issn.0252-3116.2018.05.009

Abstract

[Purpose/significance] The research on the influence of network nodes in new media environment can deeply analyze the law of information dissemination, and thus help to take appropriate measures to control the information dissemination reasonably. [Method/process] This paper constructs the model of users' node influence in the new media environment based on information entropy theory, taking WeChat as an example to analyze the influence of network nodes. By using java programming method, the paper aims to calculate the numerical value of network nodes, including direct influence, indirect influence and total influence. And finally it use Matlab software to simulate the model. [Result/conclusion] Network nodes' total influence increases with the growth in the number of connections and the frequency of interactions between nodes. Direct influence and indirect influence are growing at a different rate, but the direct influence becomes the main factor affecting the comprehensive effect of nodes when the value of indirect influence is over 100.

参考文献

[1] 中国互联网络信息中心.第39次《中国互联网络发展状况统计报告》[EB/OL].[2017-01-22].http://www.cnnic.net.cn/hlwfzyj/hlwxzbg/hlwtjbg/201701/t20170122_66437.htm.
[2] KIM K,BAEK Y M,KIM N.Online news diffusion dynamics and public opinion formation:a case study of the controversy over judges' personal opinion expression on SNS in Korea[J].The social science journal, 2015,52(2):205-216.
[3] Miorandi D, Pellegrini F D. K-shell decomposition for dynamic complex networks[C]//Proceedings of the international symposium on modeling and optimization in mobile, ad hoc and wireless networks. Paris:IEEE, 2010:488-496.
[4] LYU L,ZHANG Y,YEUNG C H. Leaders in social networks,the delicious case[J].PLos ONE,2011,6(6):e21202.
[5] DEANNE K, KATHARINE H, HONERT R,et al.Nuclear power in Australia:a comparative analysis of public opinion regarding climate change and the Fukushima disaster[J].Energy policy,2014,65:644-653.
[6] ARNABOLDI V, CONTI M, LA GALA M. Ego network structure in online social networks and its impact on information diffusion[J].Computer communications,2016,76:26-41.
[7] 曹学艳,段飞飞,方宽,等.网络论坛视角下突发事件舆情的关键节点识别及分类研究[J].图书情报工作,2014,58(4):65-70.
[8] 康伟.突发事件舆情传播的社会网络结构测度与分析——基于" 11·16校车事故"的实证研究[J].中国软科学,2012(7):169-178.
[9] 蒋侃,唐竹发,隋浩.基于微博信息扩散质量的网络舆情关键节点识别[J].情报科学,2016,34(7):64-69.
[10] 王曰芬,杭伟,梁丁洁.微博舆情社会网络关键节点识别与应用研究[J].情报资料工作,2016(3):6-11.
[11] SHANNON C E. A mathematical theory of communication[J]. Bell system technical journal, 1948,27:379-423. doi:10.1002/j.1538-7305.1948.tb01338.x.
[12] SANGAM R, OM H.The k-modes algorithm with entropy based similarity coefficient[J].Computer science,2015,50:93-98.
[13] LI Y, SHA Y, SHAN J.The research of weighted community partition based on SimHash[J].Computer science,2013,17:797-802.
[14] 魏志惠,何跃.基于信息熵和未确知测度模型的微博意见领袖识别——以"甘肃庆阳校车突发事件"为例[J].情报科学,2014,32(10):38-43.
[15] 陈远,李韫慧,张敏.基于节点度测度SNS用户信息传播贡献的实证研究——以腾讯微博为例[J].情报杂志,2014,33(10):159-164.
[16] MANKU G S,JAIN A.Detecting near-duplicates for Web crawling[M].New York:ACM,2007.
[17] CHARIKAR M S.Similarity estimation techniques from rounding algorithms[M].New York:ACM,2002.
[18] 武澎,王恒山.基于特征向量中心性的社交信息超网络中重要节点的评判[J].情报理论与实践,2014,37(5):107-113.
[19] 王晰巍,邢云菲,赵丹,等.移动环境下网络舆情信息传播路径及传播规律研究[J].情报理论与实践,2016,39(9):107-113.
[20] KIM K, BAEK Y M, KIM N.Online news diffusion dynamics and public opinion formation:a case study of the controversy over judges' personal opinion expression on SNS in Korea[J].The social science journal,2015,52(2):205-216.
[21] 王晰巍,邢云菲,赵丹,等.基于社会网络分析的移动环境下网络舆情信息传播研究——以新浪微博"雾霾"话题为例[J].图书情报工作,2015,59(7):14-22.
[22] PENG S, YANG A, Cao L.Social influence modeling using information theory in mobile social networks[J].Information science,2017,379:146-159.
[23] 艾媒报告.2017年中国新媒体行业全景报告[EB/OL].[2017-03-01]. http://www.iimedia.cn/50347.html.
[24] 中国社会科学网.中国新媒体发展报告[EB/OL].[2017-09-01]. http://www.cssn.cn/zx/bwyc/201706/t20170626_3560419_1.shtml.
[25] 方婧,陆伟. 微信公众号信息传播热度的影响因素实证研究[J].情报杂志,2016,35(2):157-162.
文章导航

/