[1] 胡吉明, 张蔓蒂. 基于知识社区的高校数字图书馆服务拓展[J]. 图书情报知识, 2014(3):117-123.
[2] 柳益君, 何胜, 熊太纯, 等. 大数据挖掘视角下的图书馆智慧服务——模型、技术和服务[J]. 现代情报, 2017, 37(11):81-86.
[3] 阮光册, 夏磊. 推荐系统的发展与公共图书馆个性化信息服务探讨[J]. 图书馆, 2016(2):94-99.
[4] 邱丰. 我国图书馆参考咨询中社交媒体利用情况调查研究[J]. 图书馆学研究, 2017(23):65-69.
[5] 刘璇. 图书馆领域社交网络应用研究述评与展望[J]. 中国图书馆学报, 2016, 42(6):102-116.
[6] 张泸月. 用户满意度视角下社交阅读推广服务的路径选择[J]. 图书情报工作, 2016, 60(21):61-67.
[7] ROSSMANN D, YOUNG S W H. Social media optimization:making library content shareable and engaging[J]. Library hi technology, 2015, 33(4):526-544.
[8] TSUJI K, TAKIZAWA N, SATO S, et al. Recommendation based on library loan records and bibliographic information[J]. Procedia-social and behavioral sciences, 2014, 147:478-486.
[9] LI R. Simulation research of university library recommended system based on big data and data mining[C]//3rd international conference on machinery, materials and information technology applications, Qingdao, Atlantis, 2015:202-206.
[10] HE P. The research on personalized recommendation algorithm of library based on big data and association rules[J]. The open cybernetics & systemics journal, 2015, 9(1):2554-2558.
[11] 袁银池, 王秀红, 金玉成. 基于用户阅读行为的主动推送微服务模式研究——以专利文献为例[J]. 情报理论与实践, 2017, 40(1):98-103.
[12] 袁虎声, 赵洗尘. 基于加权借阅网络的个性化推荐算法与实现[J]. 图书情报工作, 2016, 60(10):130-134.
[13] AKBAR M, SHAFFER C A, FAN W, et al. Recommendation based on deduced social networks in an educational digital library[C]//2014 IEEE/ACM joint conference on digital libraries, London, IEEE, 2014:29-38.
[14] 田磊, 任国恒, 王伟. 基于聚类优化的协同过滤个性化图书推荐[J]. 图书馆学研究, 2017(8):75-80.
[15] 何胜, 冯新翎, 武群辉, 等. 基于用户行为建模和大数据挖掘的图书馆个性化服务研究[J]. 图书情报工作, 2017, 61(1):40-46.
[16] 唐晓波, 周咏. 基于图书基因组的个性化图书推荐研究[J]. 图书馆学研究, 2017(2):76-85.
[17] 曾子明, 金鹏. 基于用户兴趣变化的数字图书馆知识推荐服务研究[J]. 图书馆论坛, 2016(1):94-99.
[18] 曾子明, 陈贝贝. 移动环境下基于情境感知的个性化阅读推荐研究[J]. 情报理论与实践, 2015, 38(12):31-36.
[19] 张闪闪, 黄鹏. 基于LBS的图书馆个性化推荐系统的构建[J]. 图书馆杂志, 2015, 34(12):61-68.
[20] 洪亮, 钱晨, 樊星. 移动数字图书馆资源的情境感知个性化推荐方法研究[J]. 现代图书情报技术, 2016, 32(z1):110-119.
[21] ZIEGLER C N, LAUSEN G. Making product recommendations more diverse[J]. Bulletin of the IEEE computer society technical committee on data engineering, 2009, 32(4):23-32.
[22] SCHEDL M, HAUGER D. Tailoring music recommendations to users by considering diversity, mainstreaminess, and novelty[C]//The 38th international ACM SIGIR conference on research & development in information retrieval, Santiago, ACM, 2015:947-950.
[23] YAMABA H, TANOUE M, TAKATSUKA K, et al. On a serendipity-oriented recommender system based on folksonomy and its evaluation[J]. Procedia computer science, 2013(22):276-284.
[24] 胡吉明, 林鑫. 基于热传导能量扩散的社会化小众推荐融合算法设计[J]. 情报理论与实践, 2016, 39(4):119-123.
[25] 周涛. 个性化推荐的十大挑战[J]. 中国计算机学会通讯, 2012, 8(7):48-61.
[26] ZHOU T, KUSCSIK Z, LIU J G, et al. Solving the apparent diversity-accuracy dilemma of recommender systems[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(10):4511-4515.
[27] LU L, LIU W. Information filtering via preferential diffusion[J]. Physical review E,2011,83(6):066119.
[28] LIU J G, ZHOU T, GUO Q. Information filtering via biased heat conduction[J]. Physical review E, 2011, 87(1):037101.
[29] NEWMAN M E J. The structure and function of complex networks[J]. Siam review, 2003, 45(2):167-256.
[30] 安维, 刘启华, 张李义. 个性化推荐系统的多样性研究进展[J]. 图书情报工作, 2013, 57(20):127-135.
[31] 张富国, 徐升华. 基于信任的电子商务推荐多样性研究[J]. 情报学报, 2010, 29(2):350-355.
[32] WU Q, LIU S, MIAO C, et al. A social curiosity inspired recommendation model to improve precision, coverage and diversity[C]//2016 IEEE/WIC/ACM international conference on web intelligence, Omaha, IEEE, 2016, 240-247.
[33] WU H, CUI X, HE J, et al. On improving aggregate recommendation diversity and novelty in folksonomy-based social systems[J]. Personal and ubiquitous computing, 2014, 18(8):1855-1869.
[34] 项亮. 推荐系统实践[M]. 北京:人民邮电出版社,2012.
[35] 中图分类号[EB/OL].[2018-01-23]. https://baike.baidu.com/item/中图分类号.