[目的/意义]微博对用户获取信息和建立社交网络具有重要作用。提出一种基于相似度和信任度融合的微博内容推荐方法,能够从用户需求出发进行个性化微博内容推荐,对提高微博服务质量、改善信息过载问题具有意义。[方法/过程]基于相似度和信任度融合算法,构建微博内容推荐模型,以新浪微博为研究对象,采用编程方式获取汽车、体育、运动健身、互联网和财经5个领域的数据,展开用户相似度与信任度计算的实验分析和比较。[结果/结论]分析结果显示该方法可以有效表示和挖掘微博内容,改善微博推荐的准确性和用户满意度。
[Purpose/significance] Micro-blog plays an important role in getting information and building social networks. In order to improve the quality of micro-blog services and improve the information overload, this paper proposes a recommendation method for micro-blog content, which can carry out personalized microblog content recommendation based on user demands. [Method/process] Based on the fusion algorithm of similarity and trust degree, this paper built a model of Micro-blog content recommendation. Then, it took sina micro-blog as the research object, used the programming way to get data from five areas of cars, sports, sports and fitness, internet and finance, and conducted comparative analysis on the basis of user similarity and trust calculation experiment. [Result/conclusion] The analysis results show that this method can effectively represent and mine micro-blog content, and improve the accuracy and user satisfaction of micro-blog recommendation.
[1] MENG X W, LIU S D, ZHANG Y J, et al. Research on social recommender systems[J]. Journal of software, 2015,26(6):1356-1372.
[2] 王涛,覃锡忠,贾振红, 等.基于相似度和信任度的关联规则微博好友推荐[J].计算机应用,2016,36(8):2262-2267.
[3] 翟鹤,刘柏嵩.基于用户信任及推荐反馈机制的社会网络推荐模型[J].计算机应用与软件,2016,33(11):258-262.
[4] CHEN J, GEYER W, DUGAN C, et al. Make new friends, but keep the old:recommending people on social networking sites[C]//Proceedings of the SIGCHI conference on human factors in computing systems. Seattle:ACM Press, 2009:201-210.
[5] GHOSH R, LERMAN K, SURACHAWALA T, et al. Non-conservative diffusion and its application to social network analysis[EB/OL].[2017-02-15]. https://arxiv.org/pdf/1102.4639v3.pdf.
[6] 杨晶,杨长春,丁虹.一种改进的新浪微博好友推荐算法[J].常州大学学报(自然科学版),2013,25(3):66-70.
[7] FIRE M, TENENBOIM L, LESSER O, et al. Link prediction in social networks using computationally efficient topological features[C]//Privacy, security, risk and trust, 2011 IEEE third international conference on social computing. Boston:IEEE, 2011:73-80.
[8] 崔金栋,孙遥遥,王欣, 等. 基于Folksonmy和本体融合的微博信息推荐方法研究[J]. 情报科学,2015,33(10):27-31.
[9] 唐晓波,房小可.基于隐含狄利克雷分配的微博推荐模型研究[J].情报科学,2015,33(2):3-8.
[10] ZANGERLE E, GASSLER W, SPECHT G. Using tag recommendations to homogenize Folksonomies in microblogging environments[C]//Proceedings of the 3rd international conference on social informatics(SocInfo2011).Singapore:Springer, 2011:113-126.
[11] HANNON J,BENNETT M,SMYTH B.Recommending Twitter users to follow using content and collaborative filtering approaches[C]//Proceedings of the fourth ACM conference on recommender systems.New York:ACM Press,2011:199-206.
[12] 朱雪梅.基于Word2Vec主题提取的微博推荐[D].北京:北京理工大学,2014.
[13] 李涛,王建东,叶飞跃,等.一种基于用户聚类的协同过滤推荐算法[J].系统工程与电子技术,2007,29(7):1178-1182.
[14] 刘剑波.基于协同过滤和行为分析的微博推荐系统[D].南京:南京理工大学,2013.
[15] KIM Y,SHIM K. TWITOBI:a recommendation system for Twitter using probabilistic modeling[C]//IEEE international conference on data mining. Piscataway:IEEE Computer Society, 2011:340-349.
[16] STEPHEN C, SONYA H Y,SIVA K. Knowledge sharing-a key role in the downstream supply chain[J].Information & management,2012,49(2):70-80.
[17] 涂琴.人际关系网络的建模研究[D].武汉:华中科技大学,2012.
[18] XU Z M, LI D, LIU T, et al. Measuring similarity between microblog users and its application[J]. Chinese journal of computers, 2014,37(1):207-218. 作者贡献说明:黄微:提出研究命题及研究思路; 李吉:论文撰写及最终版本修订, 数据处理及实证研究; 郭苏琳:论文修改。