[目的/意义]研究前沿的准确判断是国家宏观层面的战略需求,文献计量学作为一种定量研究方法广泛应用于科学主题探测和研究前沿识别中。[方法/过程]梳理研究前沿主题探测的发展历程和方法模型,引入全域微观模型的概念,详细介绍SciVal模块采用的主题创建方法,包括直接引用文献聚类、关键词主题命名和研究前沿遴选的主题显著性算法,并对SciVal创建的9.6万个主题和遴选出的前1%的研究前沿主题的特征进行实证分析。[结果/结论]全域微观模型可以同时一次识别整个科学领域的所有主题,但不同学科在研究前沿上表现存在差异,不能把主题显著性简单等同为重要性;主题论文数量与主题排名之间存在中度相关性;自动抽取的关键词术语从学科领域层和独特性上命名和描述主题;石墨烯相关前沿主题的演变趋势分析可以用于发现关键节点和新兴主题。
[Purpose/significance] Accurate judgment of research fronts is the national strategic macro-level demand, and scientometrics is commonly used in the quantitative method of research fronts and topic detection. [Method/process] Firstly,literature review is focused on topic detection and research fronts,then concept of the global-micro model and methods in topic creation are introduced in detail, including topic cluster with direct citation,name label with keyword, and selection methodology of topic prominence. It also analyzes nearly 96,000 topics and the top 1% research fronts created by Scival. [Result/conclusion] The global-micro model can identify all topics of different fields at the same time, but there are differences in the research fronts between different subjects, which can not equate topic prominence to the importance of simplicity. There is a moderate correlation between the number of topic papers and the topic ranking. Automatically extracted keywords can be named and described the topic in terms of the subject level and uniqueness. The topic evolution is demonstrated by the related research fronts of graphene, which can be used to identify key events and emerging trends.
[1] 吴菲菲, 杨梓, 黄鲁成. 基于创新性和学科交叉性的研究前沿探测模型——以智能材料领域研究前沿探测为例[J]. 科学学研究, 2015, 33(1):11-20.
[2] GARFIELD E. Citation indexes for science:a new dimension in documentation through association of ideas[J]. Science,1955,122(3159):108-111.
[3] PRICE D J. Networks of scientific papers[J]. Science, 1965, 149(3683):510-515.
[4] KUHN T S. The structure of scientific revolutions[M]. Chicago:University of Chicago Press,1970.
[5] GARFIELD E, SHER I H, TORPIE R J. The use of citation data in writing the history of science[M]. Philadelphia:Institute for Scientific Information, 1964.
[6] KESSLE M M. Comparison of the results of bibliographic coupling and analytic subject indexing[J]. American documentation, 1965,16(3):223-233.
[7] SMALL H, GRIFFITH B C. The structure of scientific literatures, I:identifying and graphing specialties[J]. Social studies of science, 1974(4):17-40.
[8] SMALL H. Tracking and predicting growth areas in science[J]. Scientometrics, 2006, 68(3):595-610.
[9] SMALL H. Visualizing science by citation mapping[J]. Journal of the Association for Information Science & Technology, 1999, 50(9):799-813.
[10] KLAVANS R, BOYACK K W. Quantitative evaluation of large maps of science[J]. Scientometrics, 2006, 68(3):475-499.
[11] 王小梅,邓启平,李国鹏,等.ESI研究前沿的科学图谱及在纳米领域的应用[J].图书情报工作,2017,61(12):106-112.
[12] 周群,周秋菊,冷伏海.生物科学研究前沿演进时序分析[J].中国科学院院刊,2017(4):405-412.
[13] 冷伏海,祝清松.关键研究路径分析方法优化及应用研究——以量子失协领域为例[J].情报科学,2016(4):3-6,12.
[14] BOYACK K W.Using detailed maps of science to identify potential collaborations[J]. Scientometrics, 2009, 79(1):27-44..
[15] KLAVANS R, BOYACK K W. Toward an objective, reliable and accurate method for measuring research leadership[J]. Scientometrics, 2010, 82(3):539-553.
[16] KLAVANS R, BOYACK K W. Using global mapping to create more accurate document-level maps of research fields[J]. Journal of the American Society for Information Science & Technology, 2011, 62(1):1-18.
[17] WALTMAN L, VAN ECK N J. A new methodology for constructing a publication-level classification system of science[J]. Journal of the Association for Information Science & Technology, 2012, 63(12):2378-2392.
[18] BOYACK K W, KLAVANS R. Creation of a highly detailed, dynamic, global model and map of science[J]. Journal of the Association for Information Science & Technology, 2014, 65(4):670-685.
[19] KLAVANS R, BOYACK K W. Which type of citation analysis generates the most accurate taxonomy of scientific and technical knowledge?[J]. Journal of the Association for Information Science & Technology, 2016, 68(4):984-998.
[20] SMALL H, BOYACK K W, KlAVANS R. Identifying emerging topics in science and technology[J]. Research Policy, 2014, 43(8):1450-1467.
[21] 2017研究前沿[EB/OL].[2018-03-17].https://clarivate.com.cn/research_fronts_2017/2017_research_front.pdf.
[22] BOYACK K W, KLAVANS R, SMALL H, et al. Characterizing the emergence of two nanotechnology topics using a contemporaneous global micro-model of science[J]. Journal of Engineering & Technology Management, 2014, 32(32):147-159.
[23] Delving deeper into topic prominence in science[EB/OL].[2018-03-17].https://www.elsevier.com/__data/assets/pdf_file/0006/548313/Topic-Prominence-Advanced-Webinar.pdf.
[24] ECK N J V, WALTMAN L, DEKKER R, et al. A comparison of two techniques for bibliometric mapping:multidimensional scaling and VOS[J]. Journal of the American Society for Information Science & Technology, 2010, 61(12):2405-2416.
[25] KLAVANS R, BOYACK K W. Research portfolio analysis and topic prominence[EB/OL].[2017-11-25]. https://arxiv.org/ftp/arxiv/papers/1709/1709.03453.pdf.
[26] 徐淑妹.面向卓越性的百分位数指标应用研究[D]. 北京:北京理工大学, 2015.
[27] SIEGEL R L, MILLER K D, JEMAL A. Cancer statistics[J]. Cancer Journal for Clinicians, 2016, 66(1):7-30.