[目的/意义]通过掌握智慧政务网络中部门节点之间的关系,发现重要节点及数据互联规律,有助于解决跨部门信息协同这一智慧政务的核心难点问题。[方法/过程]在面向市民的政务业务流程视角下,政务材料的提供与接纳形成的信息流构成一种特殊的复杂网络——局部近邻网络。以"深圳政府在线"为实例,对深圳市政务局部近邻网络结构进行展开可视化分析,进行同配性计算与部门节点脆弱性度量,建立部门优先级和部门集群。[结果/结论]研究发现,深圳市智慧政务局部近邻网络具有同配性,相较于异配网络更加支持信息的流通,应着力关注节点脆弱性强的部门,优先与关联度高的部门进行数据库建设与共享,进而稳定政务网络,推动智慧政务协调发展。本文研究方法对于分析城市智慧政务网络结构及特征具有良好的适配性。
[Purpose/significance] By grasping the relationship between department nodes in the smart government network, we can find the important nodes and the law of data interconnection, which is helpful to solve the core difficult problem of cross-department information collaboration in smart government.[Method/process] From the perspective of citizen-oriented government business process, local neighbor network, a special and complex network, was constituted with the information flow formed by the provision and acceptance of government materials. Taking "Shenzhen government online" as an example, this paper visualized the local nearest neighbor network structure of Shenzhen government affairs, calculates the assortativity coefficient, measures the vulnerability of department nodes, and established the department priority and department cluster.[Result/conclusion] The study found that the local nearest neighbor network of smart government in Shenzhen has homogeneity, which provides more support for information flow compared with the heterogeneity network. In the process of constructing and sharing database, the focus should be on the departments with strong node vulnerability, and give priority to the departments with high correlation so as to stabilize the government network and promote the coordinated development of smart government. The research method of this paper is also suitable for analyzing the structure and characteristics of other urban smart government networks.
[1] 汪玉凯.中国政府门户网站建设及其评价[J].新视野,2003(3):41-43.
[2] 王熠,王锁柱.基于Web日志分析的政务网站综合评价方法[J].情报科学,2007(10):1495-1498,1503.
[3] 马溪骏,程飞.基于信息熵与未确知测度的政务网站评价研究[J].科技进步与对策,2007(6):165-168.
[4] 吴珊.大数据时代政府网站电子政务建设发展现状及问题[J].科技经济导刊,2017(31):16.
[5] 田恬.国内外电子政务门户网站发展现状及趋势[J].中国管理信息化,2016,19(8):149.
[6] 白洁,项朝君.浅谈互联网背景下政务领域的网络安全[J].数字通信世界,2018(8):141.
[7] 邹凯,陈英武,陈添源.基于模糊综合评价的政务网站公众满意度分析[J].湘潭大学自然科学学报,2007(3):46-51.
[8] 张春福.基于D&M模型的政务网站用户满意度研究[J].科技广场,2017(5):170-175.
[9] 宋林丛,鲁敏.国内智慧政府相关研究综述(2005-2015)[J].现代经济信息,2016(11):122-123,125.
[10] DELOITTE CHINA.Super smart city happier society with higher quality[EB/OL].[2019-01-15].https://www2.deloitte.com/cn/en/pages/public-sector/articles/super-smart-city.html.
[11] ERNESTO E,NAOMICHI H. A vibrational approach to node centrality and vulnerability in complex networks[J]. Physica A:statistical mechanics and its applications, 2010, 389(17):3648-3660.
[12] 陈广山.海上舰船局域网络节点的脆弱性分析[J].舰船科学技术,2018,40(14):154-156.
[13] 杨秋侠,晁昕逸.基于复杂网络方法的既有雨水管段脆弱性判定[J].水资源保护,2018,34(5):27-33.
[14] 黄新.基于信息物理融合的电力系统节点脆弱性分析[J].中小企业管理与科技(中旬刊),2018(10):187-188.
[15] 段鹰,刘红,朱祥文.基于企业地位不平等的供应链脆弱性分析[J/OL].计算机集成制造系统,2008:1-11[2018-11-30].http://kns.cnki.net/kcms/detail/11.5946.TP.20181123.0933.004.html.
[16] 陈勇,胡爱群,胡啸.通信网中节点重要性的评价方法[J].通信学报,2004(8):129-134.
[17] 谭跃进,吴俊,邓宏钟.复杂网络抗毁性研究进展[J].上海理工大学学报,2011,33(6):653-668,508.
[18] KOENE J. Applied network analysis:a methodological introduction[J]. European journal of operational research, 1984, 17(3):422-423.
[19] 任晓龙,吕琳媛.网络重要节点排序方法综述[J].科学通报,2014,59(13):1175-1197.
[20] BARABASI A L, ALBERT R. Emergence of scaling in random networks[J].Science, 1999,286(5439):509-512.
[21] ERDOS P, RENYI A. On random graphs[J].Publications mathematics, 1959,4:3286-3291.
[22] MICHALIS F,PETROS F,CHRISTOS F. On power-law relationships of the Internet topology[J]. ACM SIGCOMM computer communication review, 1999, 29(4):251-262.
[23] BARABASI A L,ALBERT R.Emergence of scaling in random networks[J].Science,1999,286(15):509-512.
[24] 高国伟,龚掌立,李永先.政府大数据超网络的特征分析及其应用方向研究[J].图书馆学研究,2018(5):2-8.
[25] 逯宇铎,孙秀英.基于复杂网络的跨境电商物流网络抗毁性研究[J].科技管理研究,2018,38(20):195-200.
[26] 尹小庆,莫宇迪,林云,等.基于有向含权复杂网络的城市交通路网关键路段识别[J/OL].计算机应用研究,2018:1-6[2018-11-30].http://kns.cnki.net/kcms/detail/51.1196.TP.20180927.1303.014.html.
[27] NEWMAN M E J. Mixing patterns in networks[J]. Physical Review E statistical nonlinear & soft matter physics, 2003, 67(2):026126.
[28] 王魁,马宏,黄瑞阳.基于重要节点删除法的社会网络层次结构分析[J].计算机工程,2018,44(5):174-181,187.
[29] 朱涛,张水平,郭戎潇,等.改进的加权复杂网络节点重要度评估的收缩方法[J].系统工程与电子技术,2009,31(8):1902-1905.
[30] 谭跃进,吴俊,邓宏钟.复杂网络中节点重要度评估的节点收缩方法[J].系统工程理论与实践,2006(11):79-83,102.
[31] CORLEY H,DAVID Y.Most vital links and nodes in weighted networks[J].Operations research letters,1982,1(4):157-160.
[32] ENRICO N,GUIDO P,PETER W.Finding the most vital node of a shortest path[J].Theoretical computer science,2003,296(1):167-177.
[33] 马捷,蒲泓宇,张云开,等.基于关联数据的政府智慧服务框架与信息协同机制[J].情报理论与实践,2018,41(11):20-26.