综述述评

社区画像研究综述

  • 刘蕾蕾 ,
  • 王胜涛 ,
  • 胡正银
展开
  • 1. 中国科学院成都文献情报中心 成都 610041;
    2. 中国科学院大学经济与管理学院图书情报与档案管理系 北京 100190;
    3. 江南大学糖化学与生物技术教育部重点实验室 无锡 214122
刘蕾蕾(ORCID:0000-0002-7269-5855),硕士研究生;王胜涛(ORCID:0000-0001-7883-3924),博士研究生。

收稿日期: 2019-04-01

  修回日期: 2019-06-18

  网络出版日期: 2019-12-05

基金资助

本文系中国科学院"十三五"信息化专项"面向干细胞领域知识发现的科研信息化应用"(项目编号:XXH13506-203)研究成果之一。

A Literature Review on Community Profiling

  • Liu Leilei ,
  • Wang Shengtao ,
  • Hu Zhengyin
Expand
  • 1. Chengdu Documentation and Information Center, Chinese Academy of Sciences, Chengdu 610041;
    2. Department of Library, Information and Archives Management, School of Economics and Management, University of Chinese Academy of Sciences, Beijing 100190;
    3. Key Laboratory of Carbohydrate Chemistry&Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122

Received date: 2019-04-01

  Revised date: 2019-06-18

  Online published: 2019-12-05

摘要

[目的/意义] 社区画像对于解决社交网络信息过载问题,实现深层次的个性化知识服务意义重大。针对社区画像研究现状,进行客观的分析与评价,以期为社区画像进一步研究与应用提供思路。[方法/过程] 通过文献调研与分析,从研究内容、方法体系和应用场景3方面对社区画像进行调研、分析与归纳,评述其研究现状,提出未来的重点研究方向。[结果/结论] 以分析静态用户数据,采用相似性方法画像为主,聚焦于推荐服务、社区发现等传统应用。当前社区画像研究尚处在起步阶段,其数据对象、研究方法与技术手段都有待丰富,社区画像的发展前景与应用空间广阔,需进一步开拓。

本文引用格式

刘蕾蕾 , 王胜涛 , 胡正银 . 社区画像研究综述[J]. 图书情报工作, 2019 , 63(23) : 122 -130 . DOI: 10.13266/j.issn.0252-3116.2019.23.014

Abstract

[Purpose/significance] Community profiling is important for solving the overload of social network information and helping to achieve personalized and deep knowledge services. This literature review presents the research status in community profiling, and analyzes the corresponding techniques, methods and applications, and aims to provide ideas for further research and application of community profiling.[Method/process] Based on the literature investigation, this paper reviews community profiling from three aspects:research content, techniques and methods, and application scenarios. Moreover, the key features and weaknesses of the discussed techniques and methods are presented and several key research fields for future research are highlighted.[Result/conclusion] It is found that the present research focuses on static user data, user similarity methods for profiling, and traditional applications such as recommended services and community discovery. At present, the research on community profiling is still in its infancy, and the data, techniques and methods need to be enriched. It should have good prospects and wide application in the future.

参考文献

[1] SALEHI A, OZER M, DAVULCU H. Sentiment-driven community profiling and detection on social media[C]//Proceedings of the 29th ACM conference on hypertext and social media. New York:ACM, 2018:229-237.
[2] TANG L, WANG X F, LIU H. Group profiling for understanding social structures[J]. ACM transactions on intelligent systems & technology, 2011, 3(1):1-25.
[3] 程光曦.SNS中用户生成内容和行为数据的分析与应用[D].北京:北京邮电大学, 2010.
[4] 张钧.基于用户画像的图书馆知识发现服务研究[J].图书与情报,2017(6):60-63.
[5] MIDDLETON S E, SHADBOLT N R,DE ROURE D C. Ontological user profiling in recommender systems[J]. ACM transactions on information systems, 2004, 22(1):54-88.
[6] ABEL F, GAO Q, HOUBEN G J, et al. Semantic enrichment of twitter posts for user profile construction on the social web[C]//Extended semantic web conference. Berlin:Springer, 2011:375-389.
[7] 关梓骜.基于大数据技术的用户画像系统的设计与研究[D].北京:北京邮电大学,2018.
[8] AKBARI M, CHUA T S. Leveraging behavioral factorization and prior knowledge for community discovery and profiling[C]//Proceedings of the tenth ACM international conference on web search and data mining. New York:ACM, 2017:71-79.
[9] HEIMER C A, HECHTER M. Principles of group solidarity[J]. American Political Science Association, 1989, 83(1):323.
[10] ZHOU W J, JIN H X, LIU Y. Community discovery and profiling with social messages[C]//Proceedings of the 18th ACM SIGKDD international conference on knowledge discovery and data mining. New York:ACM, 2012:388-396.
[11] CRUZ J D, BOTHOREL C, POULET F. Community detection and visualization in social networks:Integrating structural and semantic information[J]. ACM transactions on intelligent systems and technology (TIST), 2013, 5(1):1-26.
[12] HAN X, WANG L, FARAHBAKHSH R, et al. CSD:a multi-user similarity metric for community recommendation in online social networks[J]. Expert systems with applications, 2016, 53:14-26.
[13] MARUI J, NORI N, SAKAKI T, et al. Empirical study of conversational community using linguistic expression and profile information[C]//International conference on active media technology. Cham:Springer, 2014:286-298.
[14] TANG L, LIU H, ZHANG J P, et al. Topic taxonomy adaptation for group profiling[J]. ACM transactions on knowledge discovery from data, 2008, 1(4):1-28.
[15] MCCARTHY J F, ANAGNOST T D. MusicFX:an arbiter of group preferences for computer supported collaborative workouts[C]//Proceedings of the 1998 ACM conference on computer supported cooperative work. New York:ACM, 1998:363-372.
[16] COSLEY D, KONSTAN J A, RIEDI J. PolyLens:a recommender system for groups of users[C]//ECSCW 2001. Proceedings of the Seventh European conference on computer supported cooperative work. Dordrecht:Springer, 2001:199-218.
[17] YU Z W, ZHOU X S, HAO Y B, et al. TV program recommendation for multiple viewers based on user profile merging[J]. User modeling and user-adapted interaction,2006, 16(1):63-82.
[18] ASHISH K, JAISWAL U C, UPADHYAY P. Intelligent system using the concept of group profiling by user profiling[J]. International journal of current engineering and technology, 2014, 4(5):3314-3317.
[19] 石太彬.基于用户通话记录的社区发现算法与社区画像研究[D].杭州:浙江大学,2017.
[20] ZHANG D Q, YU Z Y, GUO B, et al. Exploiting personal and community context in mobile social networks[M].New York:Springer, 2014:109-138.
[21] CHRISTENSEN I, SCHIAFFINO S, ARMENTANO M. Social group recommendation in the tourism domain[J].Journal of intelligent information systems,2016, 47(2):209-231.
[22] 何娟.基于用户个人及群体画像相结合的图书个性化推荐应用研究[J].情报理论与实践,2019,42(1):129-133,160.
[23] 万腾.基于iOS的性能监控和用户操作行为分析研究[D].广州:华南理工大学,2017.
[24] CAI H Y, ZHENG V W, ZHU F W, et al. From community detection to community profiling[J]. Proceedings of the Vldb Endowment, 2017, 10(7):817-828.
[25] KHALID B, MARCO B, DANIELA G, et al. Community profiling for crowdsourcing queries[EB/OL].[2018-12-08].https://basepub.dauphine.fr/bitstream/handle/123456789/16699/CommunityProfiling_belhajjame_brambilla.pdf?sequence=2.
[26] DEHGHANI M, AZARBONYAD H, KAMPS J, et al. Generalized group profiling for content customization[C]//Proceedings of the 2016 ACM conference on human information interaction and retrieval.New York:ACM, 2016:245-248.
[27] TAHA K, ELMASRI R. Personalization with dynamic group profile[C]//Advances in social networks analysis and mining. Turkey:IEEE, 2012:488-492.
[28] 孟琳.多源信息融合的机构画像的方法研究[D].北京:北京邮电大学,2018.
[29] BARYSHEVA A, PETROV M, YAVORSKIY R. Building profiles of blog users based on comment graph analysis:the Habrahabr.ru case[C]//International conference on analysis of images, social networks and texts. Cham:Springer, 2015:257-262.
[30] 姚龙飞,何利力.基于云模型理论的群体用户画像模型[J].计算机系统应用,2018, 27(6):53-59.
[31] 张海涛,崔阳,王丹,等.基于概念格的在线健康社区用户画像研究[J].情报学报,2018,37(9):912-922.
[32] GOMES J E A, PRUDÊNCIO R B C, NASCIMENTO A. A comparative study of group profiling techniques in co-authorship networks[C]//Proceedings of 2016 5th Brazilian conference on intelligent systems. Brazil:IEEE, 2016:373-378.
[33] GOMES J E A, PRUDÊNCIO R B C. Educational social network group profiling:an analysis of differentiation-based methods[EB/OL].[2019-03-08]. http://www.lbd.dcc.ufmg.br/colecoes/brasnam/2015/011.pdf.
[34] 贾伟洋.基于群体用户画像的农业信息化推荐算法研究[D].咸阳:西北农林科技大学,2017.
[35] 石季辉,于长锐,刘兰娟.基于领域本体的社区用户兴趣模型[J].情报科学, 2011(4):609-613.
[36] HAN Y, TANG J. Probabilistic community and role model for social networks[C]//Proceedings of the 21th ACM SIGKDD international conference on knowledge discovery and data mining.New York:ACM, 2015:407-416.
[37] HU Z T, YAO J J, CUI B, et al. Community level diffusion extraction[C]//Proceedings of the 2015 ACM SIGMOD international conference on management of data. New York:ACM, 2015:1555-1569.
[38] 何跃,邓姝颖,马玉凤,等.突发事件中微博用户社群舆情传播特征研究[J].情报科学, 2016,34(6):14-18.
[39] 林燕霞,谢湘生.基于社会认同理论的微博群体用户画像[J].情报理论与实践, 2018,41(3):142-148.
[40] TAJFEL H. Social identity and intergroup relations[M]. Cambridge:Cambridge University Press,2010:22-28.
[41] TURNER J C, HOGG M A, OAKES P J, et al. Rediscovering the social group:a self-categorization theory[J]. British journal of social psychology, 2011, 26(4):347-348.
[42] SENOT C, KOSTADINOV D, BOUZID M, et al. Evaluation of group profiling strategies[C]//Twenty-second international joint conference on artificial intelligence. Spain:DBLP, 2011:2728-2733.
[43] MASTHOFF J. Group recommender systems:combining individual models[M]. Boston:Springer, 2011:677-702.
[44] BERNIER C, BRUN A, AGHASARYAN A, et al. Topology of communities for the collaborative recommendations to groups[C]//3rd international conference on information systems and economic intelligence.Tunisia:SIIE, 2010:1-6.
[45] MASTHOFF J. Group modeling:selecting a sequence of television items to suit a group of viewers[J]. User modeling and user-adapted interaction, 2004, 14(1):37-85.
[46] BLEI D M, NG A Y, JORDAN M I. Latent dirichlet allocation[J]. Journal of machine learning research, 2003, 3(1):993-1022.
[47] 胡正银,方曙,文奕,等.面向TRIZ的专利自动分类研究[J].现代图书情报技术,2015(1):66-74.
[48] ZHANG Y, PORTER A L, HU Z Y, et al. "Term clumping" for technical intelligence:a case study on dye-sensitized solar cells[J]. Technological forecasting & social change, 2014, 85:26-39.
[49] AMINI B, IBRAHIM R, OTHMAN M S, et al. A multi-reference ontology for profiling scholars' background knowledge[M]. Cham:Springer, 2014:35-46.
[50] WANG B D, WANG C, BU J J, et al. Whom to mention:expand the diffusion of tweets by@recommendation on micro-blogging systems[C]//Proceedings of the 22nd international conference on World Wide Web.New York:ACM, 2013:1331-1340.
[51] ZHU Y J, YAN X R, GETOOR L, et al. Scalable text and link analysis with mixed-topic link models[C]//Proceedings of the 19th ACM SIGKDD international conference on knowledge discovery and data mining. New York:ACM, 2013:473-481.
[52] CAI H Y. Making sense of social events by event monitoring, visualization and underlying community profiling[D]. Queensland:The University of Queensland, 2016.
[53] XIE H R, LI Q, MAO X D, et al. Community-aware user profile enrichment in folksonomy[J]. Neural networks, 2014, 58(5):111-121.
[54] NTOUTSI E, STEFANIDIS K, NØRVÅG K, et al. Fast group recommendations by applying user clustering[C]//International conference on conceptual modeling. Berlin:Springer, 2012:126-140.
[55] SU C R, LI Y W, ZHANG R Z, et al. An adaptive video program recommender based on group user profiles[M]. Berlin:Springer, 2013:499-509.
[56] ZHANG C, ZHOU J, XIE W F. A users clustering algorithm for group recommendation[C]//2016 4th international conference on applied computing and information technology/3rd international conference on computational science/intelligence and applied informatics/1st international conference on big data, cloud computing, data science & engineering (ACIT-CSII-BCD). Las Vegas:IEEE, 2016:352-356.
[57] LIN Y R, SUN J, CASTRO P, et al. Metafac:community discovery via relational hypergraph factorization[C]//Proceedings of the 15th ACM SIGKDD international conference on knowledge discovery and data mining. New York:ACM, 2009:527-536.
[58] WANG Z, ZHANG D Q, ZHOU X S, et al. Discovering and profiling overlapping communities in location-based social networks[J]. IEEE transactions on systems, man, and cybernetics:systems, 2014, 44(4):499-509.
文章导航

/