情报研究

融合内容与关系的学术社交媒体上跨学科用户推荐模型研究

  • 吴小兰 ,
  • 章成志
展开
  • 1 南京师范大学新闻与传播学院网络与新媒体系 南京 210046;
    2 南京理工大学经济管理学院信息管理系 南京 210094
吴小兰(ORCID:0000-0003-1869-1738),副教授,博士。

收稿日期: 2019-10-09

  修回日期: 2020-02-01

  网络出版日期: 2020-05-05

基金资助

本文系国家社会科学青年基金项目"社交媒体视域下的跨学科用户发现及其推荐研究"(项目编号:17CTQ047)研究成果之一。

Research on Interdisciplinary User Recommendation Model in Academic Social Media Combining Content and Relations

  • Wu Xiaolan ,
  • Zhang Chengzhi
Expand
  • 1 Department of Internet and New Media, School of Journalism and Communication, Nanjing Normal University, Nanjing 210046;
    2 Department of Information Management, School of Economics&Management, Nanjing University of Science and Technology, Nanjing 210094

Received date: 2019-10-09

  Revised date: 2020-02-01

  Online published: 2020-05-05

摘要

[目的/意义] 在学术社交媒体快速发展的今天,开展跨学科研究或者寻求跨学科合作时,很多科研合作起始于社交媒体上的相识或关注,因此开展社交媒体上跨学科用户推荐非常有意义。社交媒体上主要存在"媒体"(代表内容)、"社交"(代表关系)两大类数据,因此本文开展了融合内容与关系的社交媒体跨学科用户推荐。[方法/过程] 在基于向量空间模型的用户表示之后,本文借助用户内容信息计算用户领域专业度,根据关系数据测度用户跨学科距离,同时结合用户关系网络PageRank值给出推荐结果。[结果/结论] 以科学网为例,实现"图书情报""计算机""新闻与传媒""高等教育""生物学"这5个领域内的跨学科用户推荐,并经人工实验测试检验,表明推荐结果在一定程度上能满足推荐需求。

本文引用格式

吴小兰 , 章成志 . 融合内容与关系的学术社交媒体上跨学科用户推荐模型研究[J]. 图书情报工作, 2020 , 64(9) : 95 -103 . DOI: 10.13266/j.issn.0252-3116.2020.09.011

Abstract

[Purpose/significance] With the rapid development of academic social media, when users do interdisciplinary research or seek interdisciplinary cooperation, many scientific research cooperation starts from the acquaintance or attention in social media, so it is very meaningful to research on interdisciplinary user recommendation in academic social media. There are two main types of data in social media:media (represents content) and social (represents relationship). Therefore, this paper recommended interdisciplinary users integrating content and relations. [Method/process] After user modeling based on Vector Space Model, this paper calculated user specialization with user content information, measured user's interdisciplinary distance based on relational data, then gave recommendation results combined with PageRank value of user relationship network. [Result/conclusion] Taking the science blog as an example, an interdisciplinary user recommendation model in five fields of "Library and Information", "Computer", "News and Media", "Higher Education" and "Biology" been implemented, which has been tested by artificial experiments, and showed that the recommendation results can meet the recommendation requirements to some extent.

参考文献

[1] HERTZUM M,PEJTERSEN A M. The information-seeking practices of engineers:searching for documents as well as for people[J]. Information processing & management,2000, 36(5):761-778.
[2] YIMAM-SEID D,KOBSA A. Expert-finding systems for organizations:problem and domain analysis and the DEMOIR approach[J]. Journal of organizational computing,2003, 13(1):1-24.
[3] BARJAK F. The role of the Internet in informal scholarly communication[J]. Journal of the Association for Information Science and Technology,2006, 57(10):1350-1367.
[4] KIRKUP G. Academic blogging:academic practice and academic identity[J]. London review of education,2010, 8(1):75-84.
[5] RICHARDS D, TAYLOR M,BUSCH P. Expertise recommendation:a two-way knowledge communication channel[C]//International conference on autonomic and autonomous systems. Guadeloupe:IEEE,2008:35-40.
[6] JENG W, HE D, JIANG J. User participation in an academic social networking service:A survey of open group users on Mendeley[J]. Journal of the Association for Information Science and Technology, 2015, 66(5):890-904.
[7] DENGLER F, KOSCHMIDER A, OBERWEIS A, et al. Social software for coordination of collaborative process activities[M]. Berlin:Springer,2010.
[8] MEISHAR-TAL H,PIETERSE E. Why do academics use academic social networking Sstes[J]. International review of research in open and distance learning,2017, 18(1):1-23.
[9] ORTEGA J L. Disciplinary differences in the use of academic social networking sites[J]. Online information review,2015, 39(4):520-536.
[10] ELSAYED A M. The use of academic social networks among Arab researchers:a survey[J]. Social science computer review,2016, 34(3):378-391.
[11] PRIEM J,HEMMINGER B H. Scientometrics 2.0:new metrics of scholarly impact on the social Web[J]. First monday,2010, 15(7):5-9.
[12] GUNN W. Social signals reflect academic impact:what it means when a scholar adds a paper to Mendeley[J]. Information standards quarterly,2013, 25(2):33-39.
[13] JING L, FENG X, WEI W, et al. ACRec:a co-authorship based random walk model for academic collaboration recommendation[C]//Proceedings of the companion publication of the 23rd international conference on World Wide Web.Republic and Canton of Geneva:ACM,2014:1209-214
[14] ROHANI V A, KASIRUN Z M, KUMAR S, et al. An effective recommender algorithm for cold-start problem in academic social networks[J]. Mathematical problems in engineering,2014(3):1-12.
[15] SUN O J,JENG W. Groups in academic social networking services - an exploration of their potential as a platform for multi-disciplinary collaboration[C]//IEEE third international conference on privacy, security, risk and trust. Boston:IEEE,2011:545-548..
[16] JIANG J, NI C, HE D, et al. Mendeley group as a new source of interdisciplinarity study:how do disciplines interact on mendeley?[C]//Proceedings of the 13th ACM/IEEE-CS joint conference on digital libraries. Indianapolis:ACM,2013:135-138.
[17] WU X,ZHANG C. Finding high-impact interdisciplinary users based on friend discipline distribution in academic social networking sites[J]. Scientometrics,2019, 119(2):1017-1035.
[18] REICHLING T, KAI S,WULF V. Matching human actors based on their texts:design and evaluation of an instance of the ExpertFinding framework[C]//International ACM siggroup conference on supporting group work. Florida:ACM,2005:61-70.
[19] 李明, 刘鲁, 王君, 等. 基于模糊文本分类的多知识领域专家推荐方法[J]. 北京航空航天大学学报,2009, 35(10):1254-1257.
[20] KLEINBERG J M. Authoritative sources in a hyperlinked environment[J]. Journal of the ACM,1999, 46(5):604-632.
[21] 许云红. 基于网络方法的专家知识推荐[D]. 合肥:中国科学技术大学, 2010.
[22] KAUTZ H, SELMAN B,SHAH M. Referral Web:combining social networks and collaborative filtering[J]. Communications of the ACM,1997, 40(3):63-65.
[23] 彭兰. 社会化媒体、移动终端、大数据:影响新闻生产的新技术因素[J]. 新闻界,2012(16):3-8.
[24] SALTON G. A vector space model for automatic indexing[J]. Communications of the ACM,1974, 18(11):613-620.
[25] 贺颖. 基于科学计量视角的同行评议专家遴选问题研究[D]. 天津:天津大学, 2008.
[26] 高琢玉. 基于多目标决策的专家遴选算法的研究[D]. 长沙:中南大学, 2011.
[27] PORTER A L, COHEN A S, ROESSNER J D, et al. Measuring researcher interdisciplinarity[J]. Scientometrics,2007, 72(1):117-147.
[28] 杨良斌, 周秋菊,金碧辉. 基于文献计量的跨学科测度及实证研究[J]. 图书情报工作,2009, 53(10):87-90.
[29] 和晋飞,房俊民. 一个跨学科性测度指标:作者专业度[J]. 情报理论与实践,2015, 38(5):42-45.
[30] BROMHAM L, DINNAGE R,XIA H. Interdisciplinary research has consistently lower funding success[J]. Nature,2016, 534(7609):684-687.
[31] HELMUS M R, BLAND T J, WILLIAMS C K, et al. Phylogenetic measures of biodiversity[J]. The American naturalist,2007, 169(3):E68-E83.
[32] PAGE L, BRIN S, MOTWANI R, et al. The PageRank citation ranking:bringing order to the Web[J]. Stanford digital libraries working paper,1998, 9(6):102-107.
[33] 邱均平,余厚强. 跨学科发文视角下我国图书情报学跨学科研究态势分析[J]. 情报理论与实践,2013, 36(5):5-10.
[34] 吴小兰,章成志. 基于社交媒体的高影响力跨学科用户发现研究[J]. 情报学报,2017, 36(6):618-627.
文章导航

/