[目的/意义] 对比分析数据管理能力成熟度模型,为图书馆选择与应用数据管理能力成熟度模型提供参考方案。[方法/过程] 通过模型文本的研究,介绍各模型的结构。采用比较分析法从评价维度(功能域)的设置、模型的组织体系、评价标准与规则、可操作性、公开度等5个方面对7个数据管理能力成熟度模型进行评析。[结果/结论] 每个模型具有其特色功能。CMMI、DMM、DCAM和中国DCMM的评价维度较为全面,中国DCMM即中国-数据中心服务能力成熟度模型具有较强的操作性,且其定量与定性相结合的评价方法值得借鉴。研究数据管理的能力成熟度模型(雪城大学秦健教授团队)和研究数据管理能力成熟度模型(澳大利亚ANDS)考虑图书馆数据管理的实际情况,可作为首选模型。基于各模型的对比与评析结果,形成3种适应不同情境的图书馆选择与应用数据管理能力成熟度模型的方案。
[Purpose/significance] This paper compares the main capability maturity models (CMM thereafter) for data management in order to provide references for libraries to select and use such a model.[Method/process] The structure of each model was introduced through a literature review and content analysis. The comparative analysis method was also used to evaluate 7 CMMs for data management from 5 aspects, including evaluation dimensions, organizational system, evaluation rules, operability, and openness.[Result/conclusion] Each model has its own features. The evaluation dimensions of CMMI DMM, DCAM, and DCMM are relatively comprehensive. Service capability maturity model of data center has strong operability, and its quantitative and qualitative evaluation method is worth learning from. CMMs for RDM(QIN J) and CMMs for RDM(ANDS) consider the actual situation of data management in libraries and can be used as preferred models. Based on the comparison of each model, three schemes have been formed for libraries in selecting and application of CMMs for data management.
[1] 杨鹤林.数据监护:美国高校图书馆的新探索[J].大学图书馆学报,2011(2):18-21,41.
[2] CMMI Product Team. CMMI for Development Version 1.3[EB/OL].[2019-10-15]. https://resources.sei.cmu.edu/asset_files/TechnicalReport/2010_005_001_15287.pdf.
[3] 丁宁,马浩琴.国外高校科学数据生命周期管理模型比较研究及借鉴[J].图书情报工作,2013,57(6):18-22.
[4] 李冰,宾军志.数据管理能力成熟度模型[J].大数据, 2017(4):29-36.
[5] 张凯. 数据中心服务能力成熟度模型的研究与应用[J].金融电子化, 2015(9):56-59.
[6] 王志鹏,张璨.数据中心服务能力成熟度模型国际技术报告研究[J].信息技术与标准化,2017(6):62-65,73.
[7] 叶兰.研究数据管理能力成熟度模型评析[J].图书情报知识,2015(2):115-123.
[8] 李伟绵.基于生命周期理论的研究数据管理服务评估研究[D].北京:北京理工大学,2016.
[9] 党洪莉,谭海兵. 基于DMM的数据管理成熟度模型及在服务评估中的应用[J].现代情报,2017,37(9):118-121.
[10] PENG G, PRIVETTE J L, KEARNS E J, et al. A unified framework for measuring stewardship practices applied to digital environmental datasets[J]. Data science journal, 2015,13:231-253.
[11] 张宇杰,安小米,张国庆. 政府大数据治理的成熟度评测指标体系构建[J]. 情报资料工作, 2018(1):28-32.
[12] 刘桂锋,钱锦琳,卢章平.国外数据治理模型比较[J]. 图书馆论坛,2018(11):18-26.
[13] CMMI Institute. Data Management Maturity (DMM)[EB/OL].[2019-09-25].https://www.cmmiinstitute.com/data-management-maturity.
[14] EDM Council. DCAM:the data management capability assessment model[EB/OL].[2019-09-25]. https://edmcouncil.org/page/aboutdcamreview.
[15] The Gartner enterprise information management framework[EB/OL].[2019-10-04]. https://blogs.gartner.com/andrew_white/files/2016/10/On_site_poster.pdf.
[16] QIN J, CROWSTON K, KIRKLAND A. A capability maturity model for research data management[EB/OL].[2019-10-17].http://rdm.ischool.syr.edu/xwiki/bin/view/CMM+for+RDM/WebHome.
[17] ANDS. Creating a data management framework[EB/OL].[2019-10-17]. http://www.ands.org.au/guides/creating-a-data-management-framework.
[18] Data Management maturity models:a comparative analysis[EB/OL].[2019-10-04].https://datacrossroads.nl/2018/12/16/data-management-maturity-models-a-comparative-analysis/.
[19] DMM model at a glance-Chinese Language (Digital Version)[EB/OL].[2019-09-30].https://cmmiinstitute.com/getattachment/eb414209-110e-491b-b45c-c5b2fa6a5d54/attachment.aspx.
[20] 韩懿,王银毓,杨威.经典数据管理能力成熟度模型比较及战略管控型集团应用路线建议[J]. 上海船舶运输科学研究所学报,2018,41(3):72-79.