[1] 术语工作原则与方法[J].术语标准化与信息技术,2003(1):45-48.
[2] ZHANG Z, GAO J, CIRAVEGNA F. Semre-rank:improving automatic term extraction by incorporating semantic relatedness with personalised pagerank[J]. ACM transactions on knowledge discovery from data, 2018, 12(5):1-41.
[3] ASTRAKHANTSEV N. ATR4S:toolkit with state-of-the-art automatic terms recognition methods in scala[J]. Language resources and evaluation, 2018, 52(3):853-872.
[4] CASTELLVí M T C, BAGOT R E, PALATRESI J V. Automatic term detection:a review of current systems[J]. Recent advances in computational terminology, 2001(2):53-88.
[5] MARSHALL P, BANDAR Z. Working towards connectionist modeling of term formation[C]//Proceedings of the international conference on computational intelligence. Heidelberg:Springer,1999:522-529.
[6] BENGIO Y. A connectionist approach to speech recognition[J]. International journal of pattern recognition and artificial intelligence, 1993, 7(4):647-667.
[7] 陈文亮, 朱靖波, 姚天顺, 等. 基于Bootstrapping的领域词汇自动获取[C]//全国第七届计算语言学联合学术会议论文集. 北京:清华大学出版社, 2003:67-72.
[8] KAUSHIK N, CHATTERJEE N. A practical approach for term and relationship extraction for automatic ontology creation from agricultural text[C]//Proceedings of the 2016 international conference on information technology. Bhubaneshwar:IEEE, 2016:241-247.
[9] STANKOVI? R, KRSTEV C, OBRADOVI? I, et al. Rule-based automatic multi-word term extraction and lemmatization[C]//Proceedings of the 10th international conference on language resources and evaluation. Portoro?, Slovenia:European Language Resources Association, 2016:507-514.
[10] DU L, LI X, LIN D. Chinese term extraction from Web pages based on expected point-wise mutual information[C]//Proceedings of the 2016 12th international conference on natural computation, fuzzy systems and knowledge discovery. Changsha:IEEE, 2016:1647-1651.
[11] 李丽双,王意文,黄德根.基于信息熵和词频分布变化的术语抽取研究[J].中文信息学报,2015,29(1):82-87.
[12] FRANTZI K T, ANANIADOU S, TSUJⅡ J. The c-value/nc-value method of automatic recognition for multi-word terms[C]//Proceedings of the international conference on theory and practice of digital libraries. Berlin:Springer, 1998:585-604.
[13] 周浪, 史树敏, 冯冲, 等. 基于多策略融合的中文术语抽取方法[J]. 情报学报, 2010(3):460-467.
[14] 王思丽,祝忠明,刘巍,等. 基于深度学习的领域本体概念自动获取方法研究[J]. 情报理论与实践,2019(10):1-13.
[15] LOPEZ P, ROMARY L. HUMB:automatic key term extraction from scientific articles in GROBID[C]//Proceedings of the 5th international workshop on semantic evaluation. Los Angeles:Association for Computational Linguistics, 2010:248-251.
[16] 赵欣. 基于最大熵的中文术语抽取系统的设计与实现[D].西安:西安电子科技大学,2012.
[17] SHIRAKAWA M, NAKAYAMA K, HARA T, et al. Wikipedia-based semantic similarity measurements for noisy short texts using extended naive bayes[J]. IEEE transactions on emerging topics in computing, 2015, 3(2):205-219.
[18] ZENG W, LI X, LI H. Study on Chinese term extraction method based on machine learning[C]//Proceedings of the international conference of pioneering computer scientists, engineers and educators. Singapore:Springer, 2018:128-135.
[19] PAN H S, ZHAO J Y. Combining syntactic information with HMM for term extraction[C]//Proceedings of the 20152nd international conference on information science and control engineering. Washington, DC:IEEE Computer Society, 2015:170-173.
[20] 岑咏华, 韩哲, 季培培. 基于隐马尔科夫模型的中文术语识别研究[J]. 数据分析与知识发现, 2008, 24(12):54-58.
[21] 章成志. 基于多层术语度的一体化术语抽取研究[J]. 情报学报, 2011, 30(3):275-285.
[22] ZHENG D, ZHAO T, YANG J. Research on domain term extraction based on conditional random fields[C]//International conference on computer processing of oriental languages. Heidelberg:Springer, 2009:290-296.
[23] ZHAN Q, WANG C. A hybrid strategy for Chinese domain-specific terminology extraction[C]//2015 11th international conference on semantics, knowledge and grids.Washington, DC:IEEE Computer Society, 2015:217-221.
[24] RIGOUTS TERRYN A, DROUIN P, HOSTE V, et al. Analysing the Impact of supervised machine learning on automatic term extraction:HAMLET vs TermoStat[C]//Proceedings of the international conference on recent advances in natural language processing.Varna, Bulgaria:INCOMA Ltd. 2019:1012-1021.
[25] CHI C Y, ZHANG Y. Information extraction from Chinese papers based on hidden markov model[J]. Advanced materials research, 2013, 846:1291-1294.
[26] 黄菡,王宏宇,王晓光.结合主动学习的条件随机场模型用于法律术语的自动识别[J].数据分析与知识发现,2019,3(6):66-74.
[27] CHALAPATHY R, BORZESHI E Z, PICCARDI M. Bidirectional LSTM-CRF for clinical concept extraction[C]//Proceedings of the clinical natural language processing workshop. Osaka:The COLING 2016 Organizing Committee, 2016:7-12.
[28] WANG R, LIU W, MCDONALD C. Featureless domain-specific term extraction with minimal labelled data[C]//Proceedings of the Australasian Language Technology Association workshop 2016. Australia:Australasian Language Technology Association,2016:103-112.
[29] 马建红, 张亚梅, 姚爽, 等. 基于BLSTM_Attention_CRF模型的新能源汽车领域术语抽取[J]. 计算机应用研究, 2019(5):1-8.
[30] 刘宇飞,尹力,张凯,等.基于深度迁移学习的技术术语识别——以数控系统领域为例[J].情报杂志,2019,38(10):168-175.
[31] ALFARONE D, DAVIS J. Unsupervised learning of an is-a taxonomy from a limited domain-specific corpus[C]//24th international joint conference on artificial intelligence. Buenos Aires:AAAI Press, 2015:1434-1441.
[32] TERRYN A R, HOSTE V, LEFEVER E. In no uncertain terms:a dataset for monolingual and multilingual automatic term extraction from comparable corpora[J]. Language resources and evaluation, 2019(6):1-34.
[33] L'HOMME M-C, BENALI L, BERTRAND C, et al. Definition of an evaluation grid for term-extraction software[J]. Terminology international journal of theoretical and applied issues in specialized communication, 1996, 3(2):291-312.
[34] SAURON V A. Tearing out the terms:evaluating terms extractors[C]//Proceedings of translating and the computer 2002. London:Aslib, 2002:1-18.
[35] 赵洪, 王芳. 理论术语抽取的深度学习模型及自训练算法研究[J]. 情报学报, 2018, 37(9):923-938.
[36] INKPEN D, PARIBAKHT T S, FAEZ F, et al. Term evaluator:a tool for terminology annotation and evaluation[J]. International journal of computational linguistics and applications, 2016, 7(2):145-165.
[37] IKEDA M, YAMAMOTO A. Extending various thesauri by finding synonym sets from a formal concept lattice[J]. Information and media technologies, 2017(12):240-266.
[38] KAWAMURA T, KOZAKI K, KUSHIDA T, et al. Expanding science and technology thesauri from bibliographic datasets using word embedding[C]//2016 IEEE 28th international conference on tools with artificial intelligence. San Jose:IEEE, 2016:857-864.
[39] 宋培彦,陈白雪,王星.语义网环境下叙词表构建方法研究[J].情报科学, 2018, 36(2):14-17.
[40] OMELAYENKO B. Learning of ontologies for the Web:the analysis of existent approaches[C]//Proceedings of the international workshop on Web dynamics. London:WebDyn@ICDT. 2001:16-25.
[41] 李丽双. 领域本体学习中术语及关系抽取方法的研究[D].大连:大连理工大学,2013.
[42] 蒋婷. 学科领域本体学习及学术资源语义标注研究[D].南京:南京大学,2017.
[43] GAIZAUSKAS R, PARAMITA M L, BARKER E, et al. Extracting bilingual terms from the Web[J]. Terminology international journal of theoretical and applied issues in specialized communication, 2015, 21(2):205-236.
[44] HUANG G, ZHANG J, ZHOU Y, et al. Learning from parenthetical sentences for term translation in machine translation[C]//Proceedings of the 9th SIGHAN workshop on Chinese language processing.Taipei:Association for Computational Linguistics.2017:37-45.
[45] KHIN N T W, YEE N N. Query classification based information retrieval system[C]//2018 international conference on intelligent informatics and biomedical sciences. Bangkok:IEEE, 2018:151-156.
[46] 曾文,李辉,徐红姣,等.深度学习技术在科技文献数据分析中的应用研究[J].情报理论与实践,2018,41(5):110-113.
[47] 曾文,车尧,张运良,等.服务于科技大数据情报分析的方法及工具研究[J].情报科学,2019,37(4):92-96.
[48] 俞琰,赵乃瑄.融入术语知识的专利主题发现方法[J].图书情报工作,2018,62(21):118-126.
[49] 王健,殷旭,吕学强,等.基于CRFs的专利文献领域术语抽取方法[J].计算机工程与设计,2019,40(1):279-284.