[1] 鄂海红,张文静,肖思琪,等.深度学习实体关系抽取研究综述[J].软件学报,2019,30(6):1793-1818.
[2] 胡莺夕. 基于深度学习的多实体关系识别及自动文本摘要方法研究与实现[D].北京:北京邮电大学,2019.
[3] 郑实福,刘挺,秦兵,等.自动问答综述[J].中文信息学报,2002(6):46-52.
[4] 刘峤,李杨,段宏,等.知识图谱构建技术综述[J].计算机研究与发展,2016,53(3):582-600.
[5] KOEHN P. A parallel corpus for statistical machine translation[C]//Proceedings of the third workshop on statistical machine translation. Stroudsburg:ACL Press, 2005:3-4.
[6] ZHAO S, GRISHMAN R. Extracting relations with integrated information using kernel methods[C]//Proceedings of the annual meeting of the Association for Computational Linguistics. Stroudsburg:ACL Press, 2005:419-426.
[7] KAMBHATLA N. Combining lexical, syntactic, and semantic features with maximum entropy models for extracting relations[C]//Proceedings of the annual meeting of the Association for Computational Linguistics. Stroudsburg:ACL Press, 2004:178-181.
[8] MILLER S, FOX H, RAMSHAW L, et al. A novel use of statistical parsing to extract information from text[C]//Proceedings of the 2000 conference of the North American chapter of the Association for Computational Linguistics. Stroudsburg:ACL Press, 2000:226-233.
[9] CULOTTA A, MCCALLUM A, BETZ J T, et al. Integrating probabilistic extraction models and data mining to discover relations and patterns in text[C]//Proceedings of language and technology conference. New York:ITC Press, 2006:296-303.
[10] BRIN S. Extracting patterns and relations from the World Wide Web[C]//Proceedings of international workshop on the Web and databases. Berlin:Springer, 1998:172-183.
[11] CRAVEN M, KUMLIEN J. Constructing biological knowledge bases by extraction information from text sources[C]//Proceedings of the seventh international conference on intelligent systems for molecular biology. Menlo Park:AAAI Press,1999:77-86.
[12] HASEGAWA T, SEKINE S, GRISHMAN R. Discovering relations among named entities from large corpora[C]//Proceedings of the annual meeting on Association for Computational Linguistics. Stroudsburg:ACL Press, 2004:415.
[13] SOCHER R, HUVAL B, MANNING C D, et al. Semantic compositionality through recursive matrix-vector spaces[C]//Proceedings of the 2012 joint conference on empirical methods in natural language processing and computational natural language learning. Stroudsburg:ACL Press, 2012:1201-1211.
[14] ZENG D J, LIU K, LAI S W, et al. Relation classification via convolutional deep neural network[C]//Proceedings of the annual meeting of the Association for Computational Linguistics. Stroudsburg:ACL Press, 2014:2335-2344.
[15] SANTOS C N D, XIANG B, ZHOU B. Classifying relations by ranking with convolutional neural networks[EB/OL].[2020-01-01]. https://arxiv.org/pdf/1504.06580.pdf.
[16] KATIYAR A, CARDIE C. Going out on a limb:joint extraction of entity mentions and relations without dependency trees[C]//Proceedings of the annual meeting of the Association for Computational Linguistics. Stroudsburg:ACL Press, 2017:917-928.
[17] ZENG D J, LIU K, CHEN Y B, et al. Distant supervision for relation extraction via piecewise convolutional neural networks[C]//Conference on empirical methods in natural language processing. Stroudsburg:ACL Press,2015:1753-1762.
[18] LIN Y K, SHEN S Q, LIU Z Y, et al. Neural relation extraction with selective attention over instances[C]//Proceedings of the annual meeting of the Association for Computational Linguistics. Stroudsburg:ACL Press, 2016:2124-2133.
[19] JI G L, LIU K, HE S Z. Distant supervision for relation extraction with sentence-level attention and entity descriptions[C]//Proceedings of national conference on artificial intelligence. Menlo Park:AAAI Press, 2017:3060-3066.
[20] REN X, WU Z Q, HE W Q, et al. CoType:joint extraction of typed entities and relations with knowledge bases[C]//Proceedings of the 26th international conference on World Wide Web. Stroudsburg:ACL Press, 2017:1015-1024.
[21] HUANG Y Y, WANG W Y. Deep residual learning for weakly-supervised relation extraction[C]//Proceedings of the 2017 conference on empirical methods in natural language processing. Stroudsburg:ACL Press, 2017:1803-1807.
[22] 蒋婷,孙建军.学术资源本体非等级关系抽取研究[J].图书情报工作,2016,60(20):112-122.
[23] 俞琰,陈磊,姜金德,等.基于依存句法分析的中文专利候选术语选取研究[J].图书情报工作,2019,63(18):109-118.
[24] 吴粤敏,丁港归,胡滨.基于注意力机制的农业金融文本关系抽取研究[J].数据分析与知识发现,2019,3(5):86-92.
[25] 朱惠,王昊,苏新宁,等.汉语领域术语非分类关系抽取方法研究[J].情报学报,2018,37(12):1193-1203.
[26] 张琴,郭红梅,张智雄.融合词嵌入表示特征的实体关系抽取方法研究[J].数据分析与知识发现,2017,1(9):8-15.
[27] 陈果,许天祥.小规模知识库指导下的细分领域实体关系发现研究[J].情报学报,2019,38(11):1200-1211.
[28] QIAN L H, HUI H T, HU Y N, et al. Bilingual active learning for relation classification via pseudo parallel corpora[C]//Proceedings of the 52nd annual meeting of the Association for Computational Linguistics. Stroudsburg:ACL Press, 2014:582-592.
[29] KIM S, JEONG M, LEE J, et al. Cross-lingual annotation projection for weakly-supervised relation extraction[J]. Transactions on Asian language information processing, 2014, 13(1):1-26.
[30] 胡亚楠,惠浩添,钱龙华,等.基于机器翻译的双语协同关系抽取[J].计算机应用研究,2015,32(3):662-665.
[31] FARUQUI M, KUMAR S. Multilingual open relation extraction using cross-lingual projection[C]//Poceedings of the 2015 conference of the North American chapter of the Association for Computational Linguistics. Stroudsburg:ACL Press, 2015:1351-1356.
[32] VERGA P, BELANGER D, STRUBELL E, et al. Multilingual relation extraction using compositional universal schema[C]//Proceedings of the 2016 conference of the North American chapter of the Association for Computational Linguistics. Stroudsburg:ACL Press, 2016:886-896.
[33] LIN Y K, LIU Z Y, SUN M S. Neural relation extraction with multi-lingual attention[C]//Proceedings of the annual meeting of the Association for Computational Linguistics. Stroudsburg:ACL Press,2017:34-43.
[34] WANG X Z, HAN X, LIN Y K, et al. Adversarial multi-lingual neural relation extraction[C]//Proceedings of the 27th international conference on computational linguistics. Stroudsburg:ACL Press, 2018:1156-1166.
[35] ZOU B W, XU Z Z, HONG Y, et al. Adversarial feature adaptation for cross-lingual relation classification[C]//Proceedings of the 27th international conference on computational linguistics. Stroudsburg:ACL Press,2018:437-448.
[36] GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]//Proceedings of the 27th international conference on neural information processing systems. Montreal:ICONIP Press, 2014:2672-2680.
[37] CONNEAU A, LAMPLE G, RANZATO M A, et al. Word translation without parallel data[C]//Proceedings of the international conference on learning representations. Vancouver:ICLR Press, 2018.
[38] ARTETXE M, LABAKA G, and AGIRRE E. A robust self-learning method for fully unsupervised cross-lingual mappings of word embeddings[C]//Proceedings of the 56th annual meeting of the Association for Computational Linguistics. Stroudsburg:ACL,2018:789-798.
[39] IRVINE A, CALLISONBURCH C. A comprehensive analysis of bilingual lexicon induction[J]. Computational linguistics, 2017, 43(2):273-310.
[40] JOULIN A, GRAVE E, BOJANOWSKI P, et al. Bag of tricks for efficient text classification[C]//Proceedings of the 15th conference of the European chapter of the Association for Computational Linguistics. Stroudsburg:ACL Press, 2017:427-431.
[41] SHIGETO Y, SUZUKI I, HARA K, et al. Ridge regression, hubness, and zero-shot learning[C]//European conference on machine learning. Switzerland:Springer, 2015:135-151.
[42] PAPADOPOULOS S, BAKIRAS S, PAPADIAS D. Nearest neighbor search with strong location privacy[J]. Proceedings of the VLDB endowment, 2010, 3(1/2):619-629.
[43] WALKER C, STRASSEL S, MEDERO J, et al. ACE 2005 multilingual training corpus[EB/OL].[2020-02-20]. https://catalog.ldc.upenn.edu/LDC2006T06.
[44] Facebook. Word vectors for 157 languages[EB/OL] [2020-03-01]. https://fasttext.cc/docs/en/crawl-vectors.html.
[45] 余圆圆,巢文涵,何跃鹰,等.基于双语主题模型和双语词向量的跨语言知识链接[J].计算机科学,2019,46(1):238-244.
[46] 李亚超,熊德意,张民.神经机器翻译综述[J].计算机学报,2018,41(12):2734-2755.