[目的/意义] [JP+1]团队合作已成为当今知识创新的一种重要组织形式。从动态网络视角探究科研团队动态演化规律对于促进科研团队的发现、组建和管理具有重要意义。[方法/过程] 以人工智能领域为例,采用Louvain社群发现算法识别人工智能领域研究团队,通过计算团队合作网络中节点数、边数、网络密度和平均聚集系数四项拓扑指标的极值分布,从微观和宏观视角探究该领域高产团队演化的特征与规律,以揭示科研团队演化的内在动因。[结果/结论] 微观视角下,合著网络拓扑指标的极值分布揭示人工智能领域高产团队演化的动态属性;宏观视角下,高产团队在网络密度与网络平均集聚系数上呈现出演化共性,多数团队在演化中催生更多新的合作关系的产生;结合团队的演化路径来看,人工智能领域高产团队中各时期的"小团体"合作现象显著,且"小团体"之间的合作直接影响着整体团队的走向。
[Purpose/significance] Teamwork has become an important form of organization for knowledge innovation today. Exploring the dynamic evolution law of scientific research teams from the perspective of dynamic networks is of great significance to promote the discovery, formation and management of scientific research teams.[Method/process] Taking the field of artificial intelligence as an example, this paper used the Louvain community discovery algorithm to identify research teams in the field of artificial intelligence. The extreme value distribution of the number of nodes, edges, network density, and clustering coefficients in the team cooperation network were calculated. A combination of micro and macro perspective explored the laws and characteristics of the evolution of high-yield teams in this field, aiming at revealing the intrinsic motivation of the evolution of scientific research teams.[Result/conclusion] From the micro perspective, the extreme value distribution of co-authored network topological indicators reveals the dynamic properties of the evolution of high-yield teams in the field of artificial intelligence; from the macro perspective, high-yield teams show evolutionary commonality in network density and network average clustering coefficients, and most teams foster more new cooperative relationships in the evolution process. In view of the evolution path of the team, the phenomenon of "small group" cooperation in high-yield teams in the field of artificial intelligence is significant, and the cooperation between "small groups" directly affects the direction of the overall team.
[1] VERBREE M, HORLINGS E, GROENEWEGEN P, et al. Organizational factors influencing scholarly performance:a multivariate study of biomedical research groups[J]. Scientometrics, 2015,102(1):25-49.
[2] PERIANES-RODRÍGUEZ A, OLMEDA-GÓMEZ C, MOYA-ANEGÓN F. Detecting, identifying and visualizing research groups in co-authorship networks[J]. Scientometrics, 2010,82(2):307-319.
[3] VAN RAAN A F J. Scaling rules in the science system:influence of field-specific citation characteristics on the impact of research groups[J]. Journal of the American Society for Information Science and Technology, 2008,64(7):1852-1863.
[4] YU Q, SHAO H, DUAN Z. Research groups of oncology co-authorship network in China[J]. Scientometrics, 2011,89(2):553-567.
[5] REY-ROCHA J, GARZÓN-GARCÍA B, MARTÍN-SEMPERE M J. Scientists' performance and consolidation of research teams in biology and biomedicine at the Spanish Council for Scientific Research[J]. Scientometrics, 2006,69(2):183-212.
[6] MARTÍN-SEMPERE M J, GARZÓN-GARCÍA B, REY-ROCHA J. Team consolidation, social integration and scientists' research performance:an empirical study in the Biology and Biomedicine field[J]. Scientometrics, 2008,76(3):457-482.
[7] MORRIS S A, GOLDSTEIN M L. Manifestation of research teams in journal literature:a growth model of papers, authors, collaboration, coauthorship, weak ties, and Lotka's law[J]. Journal of the American Society for Information Science and Technology, 2007,64(7):1852-1863.
[8] AZAOUZI M, RHOUMA D, ROMDHANE L B. Community detection in large-scale social networks:state-of-the-art and future directions[J]. Social network analysis & mining, 2019, 9(1):23.
[9] BÖRNER K, CONTRACTOR N, FALK-KRZESINSKI H J, et al. A multi-level systems perspective for the science of team science[J]. Science translational medicine, 2010,2(49):49cm24-49cm24.
[10] GIRVAN M, NEWMAN M E J. Community structure in social and biological networks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002,99(12):7821-7826.
[11] NEWMAN M E J. Modularity and community structure in networks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006,103(23):8577-8582.
[12] ASUR S, PARTHASARATHY S, UCAR D. An event-based framework for characterizing the evolutionary behavior of interaction graphs[C]//ACM SIGKDD international conference on knowledge discovery & data mining. New York:ACM, 2007:913-921.
[13] MASMOUDI A, MEZGHANI E, BELLAAJ H, et al. A web-based knowledge management system for scientific research team[C]//2017 IEEE 26th international conference on enabling technologies:infrastructure for collaborative enterprises. Poznan:IEEE, 2017:296-301.
[14] OWENS D A, MANNIX E A, NEALE M A. Strategic formation of groups:issues in task performance and team member selection[J]. Research on managing groups and teams:composition, 1998,1(1998):149-165.
[15] JOHNSON N F, XU C, ZHAO Z, et al. Human group formation in online guilds and offline gangs driven by a common team dynamic[J]. Physical review E, 2009, 79(6):1-11.
[16] CEBALLOS H G, GARZA S E, CANTU F J. Factors influencing the formation of intra-institutional formal research groups:group prediction from collaboration, organisational, and topical networks[J]. Scientometrics, 2018,114(1):181-216.
[17] MILOJEVIC S. Principles of scientific research team formation and evolution[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014,111(11):3984-3989.
[18] TAKAFFOLI M, SANGI F, FAGNAN J, et al. MODEC-modeling and detecting evolutions of communities[C]//Fifth international AAAI conference on weblogs and social media. California:The AAAI Press, 2011:626-629.
[19] 王曰芬,李冬琼,余厚强. 生命周期阶段中的科学合作网络演化及高影响力学者成长特征研究[J]. 情报学报, 2018,37(2):121-131.
[20] BARABÁSI A L, JEONG H, NÉDA Z, et al. Evolution of the social network of scientific collaborations[J]. Physica A:Statistical mechanics and its applications, 2002, 311(3-4):590-614.
[21] TAKAFFOLI M, FAGNAN J, SANGI F, et al. Tracking changes in dynamic information networks[C]//International conference on computational aspects of social networks. Piscataway:IEEE, 2011:94-101.
[22] WANG Y, WU B, DU N. Community evolution of social network:feature, algorithm and model[EB/OL].[2020-03-31]. http://arxiv.org/abs/0804.4356.
[23] HOPCROFT J, KHAN O, KULIS B, et al. Tracking evolving communities in large linked networks[J]. Proceedings of the National Academy of Sciences of the United States of America,2004,101(SUPPL. 1):5249-5253.
[24] PALLA G, BARABÁSI A L, VICSEK T. Quantifying social group evolution[J]. Nature. 2007, 446(7136):664-667.
[25] OSBORNE F, SCAVO G, MOTTA E. A hybrid semantic approach to building dynamic maps of research communities[C]//International conference on knowledge engineering and knowledge management. Cham:Springer, 2014:356-372.
[26] 刘先红,李纲. 国家自然科学基金连续资助期间科研团队的合作稳定性分析[J]. 中国科学基金, 2016,30(4):372-378.
[27] 郭世月,李睿. 合著网络模式与论文产出数量及质量的相关性研究——以中国催化剂领域期刊论文合著网络为例[J]. 情报学报. 2013,32(3):314-327.
[28] BACKSTROM L, HUTTENLOCHER D, KLEIUNBERG J. Group formation in large social networks:membership, growth, and evolution[C]//Proceedings of the 12th ACM SIGKDD International conference on knowledge discovery and data mining. New York:ACM, 2006:44-64.