[1] 万宁.浅析颠覆性创新、破坏性创新和突破性创新三者关系[J].商,2015(30):122-123.
[2] DOSI G, NELSON R R. Technological paradigms and technological trajectories[J]. Research policy, 1982, 11(3):147-162.
[3] TUSHMAN M L, ANDERSON P. Technological discontinuities and organizational environments[J]. Administrative science quarterly, 1986, 31(3):439-465.
[4] KOTELNIKOV V. Radical innovation versus incremental innovation[M]. Boston:Harvard Business School Press, 2000:41-85.
[5] 肖海林, 董慈慈.突破性技术创新研究:现状与展望——基于SSCI和CSSCI期刊的文献计量分析[J]. 经济管理,2020,42(2):192-208.
[6] ZHOU K Z, YIM C K,TSE D K. The effects of strategic orientations on technology- and market-based breakthrough innovations[J]. Journal of marketing, 2005, 69(2):42-60.
[7] 孙晓雅, 陈娟娟. 创新网络关系强度与创新模式关系的研究综述[J]. 技术与创新管理, 2016, 37(2):134-140.
[8] FORES B,CAMISON C.Does incremental and radical innovation performance depend on different types of knowledge accumulation capabilities and organizational size[J].Journal of business research,2016,69(2):831-848.
[9] 张金柱, 张晓林. 基于科技资源的突破性创新指标及识别方法综述[J]. 图书情报工作, 2012, 56(22):56-61.
[10] KUHN T S. The structure of scientific revolutions[J]. Physics today, 1962, 16(4):69.
[11] WRAY K B. Kuhn and the discovery of paradigms[J]. Philosophy of the social sciences, 2011, 41(3):380-397.
[12] ANDERSEN H, BARKER P, CHEN X. The cognitive structure of scientific revolutions[M]. Cambridge:Cambridge University Press, 2006:6-10.
[13] 杜建,孙轶楠,张阳,等.变革性研究的科学计量学特征与早期识别方法[J].中国科学基金,2019,33(1):88-98.
[14] GALISON P. Refections on image and logic:a material culture of microphysics[J]. Perspectives on science, 1999, 7(2):255-284.
[15] VAN RAAN A F J. On growth, ageing, and fractal differentiation of science[J]. Sentometrics, 2000, 47(2):347-362.
[16] HOLLINGSWORTH J R. Scientific discoveries:an institutionalist and path-dependent perspective[J]. Biomedical and health research, 2008,72:317-353.
[17] 蒋军锋, 李孝兵, 殷婷婷, 等. 突破性技术创新的形成:述评与未来研究[J]. 研究与发展管理, 2017(6):109-120.
[18] 李政, 刘春平, 罗晖. 浅析颠覆性技术的内涵与培育——重视颠覆性技术背后的基础科学研究[J]. 全球科技经济瞭望, 2016, 31(10):53-61.
[19] 李良德, 陈劲, 莫昕玮. 突破性创新管理模式研究[J]. 电子政务, 2001(11):38-41.
[20] 梁正, 邓兴华, 洪一晨. 从变革性研究到变革性创新:概念演变与政策启示[J]. 科学与社会, 2017(3):94-106.
[21] WINNINK J. Early-stage detection of breakthrough-class scientific research[D].Leiden:Universitite Leiden, 2017.
[22] 付玉秀, 张洪石. 突破性创新:概念界定与比较[J]. 数量经济技术经济研究, 2004, 21(3):73-83.
[23] KOSHLAND D E. The cha-cha-cha theory of scientific discovery[J]. Science, 2007, 317(5839):761-762.
[24] CAMPANARIO J M. Rejecting and resisting Nobel class discoveries:accounts by Nobel Laureates[J]. Entometrics, 2009, 81(2):549-565.
[25] Deep Tech.《麻省理工科技评论》2020年"全球十大突破性技术"[J].科技中国,2020(3):5-11.
[26] 中国科学院.2019科学发展报告[D].北京:科学出版社,2020.
[27] SMALLH G. A co-citation model of a scientific specialty:a longitudinal study of collagen research[J]. Social studies of science, 1977, 7(2):139-166.
[28] SCHNEIDER J W, COSTAS R. Identifying potential "breakthrough" publications using refined citation analyses:three related explorative approaches[J]. Journal of the Association for Information Science and Technology, 2017, 68(3):709-723.
[29] WANG J, VEUGELERS R, STEPHAN P. Bias against novelty in science:a cautionary tale for users of bibliometric indicators[J]. Research policy, 2017, 46(8):1416-1436.
[30] 李勇, 安新颖, 赵迎光,等. 结合知识组织体系的突发主题监测研究[J]. 情报理论与实践, 2013, 36(5):120-123,128.
[31] KLEINBERG J. Bursty and hierarchical structure in streams[J]. Data mining & knowledge discovery, 2003, 7(4):373-397.
[32] 张金柱, 张晓林. 基于被引科学知识主题突变的突破性创新识别[J]. 数据分析与知识发现, 2016, 32(7-8):42-50.
[33] YOON J, KIM K. Identifying rapidly evolving technological trends for R&D planning using SAO-based semantic patent networks[J]. Scientometrics, 2011, 88(1):213-228.
[34] 罗素平,寇翠翠,金金,等.基于离群专利的颠覆性技术预测——以中药专利为例[J].情报理论与实践,2019,42(7):165-170.
[35] PALOMERAS N. Sleeping patents:any reason to wake up?[J]. Iese research papers, 2003, 20(35):1-25.
[36] 杜建."睡美人"文献的识别方法与唤醒机制研究[D].南京:南京大学,2017.
[37] VAN RAAN A F J, WINNINK J J. Do younger sleeping beauties prefer a technological prince?[J]. Scientometrics, 2018, 114(2):701-717.
[38] SOOD A, TELLIS G J. Technological evolution and radical innovation[J]. Journal of marketing, 2005, 69(3):152-168.
[39] TELLIS G J. Disruptive technology or visionary leadership?[J]. Journal of product innovation management, 2006, 23(1):34-38.
[40] 杨国忠,陈佳.企业突破性技术创新行为研究——基于前景理论的演化博弈分析[J].工业技术经济,2020,39(5):57-64.
[41] MAO J, MA C, LIANG Z.Identifying emerging technology:a neural network based solution[EB/OL].[2020-03-23].https://vpinstitute.org/wp-content/uploads/2019/10/MTEGTM2019-Jin.pdf.
[42] 徐路路,王芳.基于支持向量机和改进粒子群算法的科学前沿预测模型研究[J].情报科学,2019,37(8):22-28.
[43] 刘博文,白如江,周彦廷,等.基金项目数据和论文数据融合视角下科学研究前沿主题识别——以碳纳米管领域为例[J].数据分析与知识发现,2019,3(8):114-122.
[44] 张丽华.研究前沿探测及演化分析方法与实证研究[D].北京:中国科学院大学,2015.
[45] 许海云,董坤,隗玲.学科交叉主题识别与预测研究[M].北京:科学技术文献出版社,2019:53-54.
[46] 罗瑞,许海云,董坤.领域前沿识别方法综述[J].图书情报工作,2018,62(23):119-131.
[47] 叶向东.关于科学不确定性的若干思考[J].全球科技经济瞭望,2008,23(2):32-34.
[48] 张华.论不完全信息条件下的片断情报分析法[J].情报理论与实践,2008(4):498-501.
[49] 莫乃兴.产品信息不对称下的市场信号[J].商场现代化,2007(13):38-39.
[50] HEIL O,ROBERTSON T S.Toward a theory of competitive market signaling:a research agenda[J].Strategic management journal,1991,12(6):403-418.
[51] DAY G S,SCHOEMAKER PAUL J H.Peripheral vision:detecting the weak signals that will make or break your company[M].Boston:Harvard Business School Press,2006:4-6.
[52] ANSOFF H I.Managing strategic surprise by response to weak signals[J].California management review,1975,18(2):21-33.
[53] ANSOFF H I,MCDONNELL E J.Implanting strategic management[M]. Upper Saddle River:Prentice Hall International Inc,1984.
[54] COFFMAN B.Weak signal research, part I:introduction[EB/OL].[2020-06-20].http://legacy.mgtaylor.com/mgtaylor/jotm/winter97/jotmwi97.htm.
[55] BROWN J S. Minding and mining the periphery[J]. Long range planning, 2004, 37(2):143-151.
[56] 赵小康.弱信号:识别、探测与应对[J].情报杂志,2010,29(1):159-163.
[57] 邓胜利,林艳青,王野.企业竞争弱信号的特征提取与定量识别研究[J].图书情报工作,2016,60(10):67-75.
[58] KUUSI O,HILTUNEN E,LINTURI H. Heikot tulevaisuussignaalit:Delfoi-tutkimus[J]. Futura, 2000(2):78-92.
[59] MOIJANEN M. Heikot signaalit tulevaisuudentutkimuksessa[J]. Futura,2003(4):38-60..
[60] PITKÄNEN R. Tulevaisuuden tutkimuksesta kilpailuetua-Opponentti[J]. Yritystalous, 2006:1-2.
[61] HILTUNEN E. The future sign and its three dimensions[J]. Futures, 2008, 40(3):247-260.
[62] LESCA H,LESCA N.Strategic decisions and weak signals[M].London:ISTE Ltd,2014:17.
[63] SCHOEMAKER P J H,DAY G S,SNYDER S A.Integrating organizational networks, weak signals, strategic radars and scenario planning[J].Technological forecasting & social change,2013,80(4):815-824.
[64] 单彬.认知视角下的弱信号分析及实证研究[D].北京:中国人民解放军军事医学科学院,2014.
[65] HILTUNEN E.Where do future-oriented people find weak signal?[M].Turku:Finland Futures Research Centre,2007.
[66] 党倩娜.新兴技术弱信号监测机制研究[M].上海:上海科学技术文献出版社,2018:26-27.
[67] ROSSEL P.Weak signals as a flexible framing space for enhanced management and decision-making[J].Technology analysis & strategic management,2009,21(3):307-320.
[68] PARK C, CHO S. Future sign detection in smart grids through text mining[J]. Energy procedia, 2017, 128:79-85.
[69] SAUL P.Seeing the future in weak signals[J].Journal of futures studies,2006,10(3):93-102.
[70] KUOSA T. Different approaches of pattern management and strategic intelligence[J].Technological forecasting & social change,2011,78(3):458-467.
[71] 董尹,刘千里,宋继伟,等.弱信号研究综述:概念、方法和工具[J].情报理论与实践,2018,41(10):147-154.
[72] DENG C, ZHANG S. The weak signal detection based on chaos and genetic algorithms[C]//2009 Second International Symposium on Information Science and Engineering. Washington:IEEE Computer Society, 2009:579-582.
[73] 国育家. 基于混沌理论的弱信号检测方法的研究[D].西安:西安科技大学,2017.
[74] WAGNER R,SCHOLZ S W,DECKER R.An internet-based approach to environmental scanning in marketing planning[J].Marketing intelligence & planning,2005,23(2):189-199.
[75] AMANATIDOU E,BUTTER M,CARABIAS V,et al.On concepts and methods in horizon scanning:lessons from initiating policy dialogues on emerging issue[J].Science & public policy,2012,39(2):208-221.
[76] KAUFMANN V, RAVALET E. From weak signals to mobility scenarios:a prospective study of france in 2050[J]. Transportation research procedia, 2016, 19:18-32.
[77] MEISSNER P, BRANDS C, WULF T. Quantifiying blind spots and weak signals in executive judgment:a structured integration of expert judgment into the scenario development process[J]. International journal of forecasting, 2017, 33(1):244-253.
[78] 郑圆圆,陈再良.模糊理论的应用与研究[J].苏州大学学报(工科版),2011,31(1):52-58.
[79] 董尹,刘千里.供应链风险识别中的弱信号介入、感知机制与观测方法研究[J].情报工程,2019,5(3):49-64.
[80] NOYONS E C M, RAAN A F J V. Monitoring scientific developments from a dynamic perspective:self-organized structuring to map neural network research[J]. Journal of the American Society for Information Science, 1998, 49(1):68-81.
[81] 赵松年. 突变理论:形成、发展与应用[J]. 世界科学, 1989(4):12-14.
[82] SCHEFFER M, BASCOMPTE J, BROCK W A, et al. Early-warning signals for critical transitions[J]. Nature, 2009, 461(7260):53-59.
[83] 吴浩, 侯威, 颜鹏程. 试用临界慢化原理探讨气候突变[J]. 物理学报, 2016(3):556-565.
[84] SCHEFFER M. Foreseeing tipping points[J]. Nature, 2010,467(7314):411-412.
[85] PERLA R J, CARIFIO J. The nature of scientific revolutions from the vantage point of chaos theory[J]. Science & education, 2005, 14(3/5):263-290.
[86] YOON J. Detecting weak signals for long-term business opportunities using text mining of Web news[J]. Expert systems with applications, 2012, 39(16):12543-12550.
[87] THORLEUCHTER D, VAN DEN POEL D. Weak signal identification with semantic web mining[J]. Expert systems with applications, 2013, 40(12):4978-4985.
[88] THORLEUCHTER D, VAN DEN POEL D. Idea mining for web-based weak signal detection[J]. Futures, 2015, 66(Feb.):25-34.
[89] KIM S, KIM Y E, BAE K J, et al. NEST:a quantitative model for detecting emerging trends using a global monitoring expert network and Bayesian network[J]. Futures, 2013, 52(Aug.):59-73.
[90] KIM J, LEE C. Novelty-focused weak signal detection in futuristic data:assessing the rarity and paradigm unrelatedness of signals[J]. Technological forecasting and social change, 2017, 120(Jul.):59-76.
[91] JOANNY G, PERANI S, EULAERTS O. Detection of disruptive technologies by automated identification of weak signals in technology development[C]//Proceedings of the International Conference on Scientometrics and Informetrics. Rome:INT SOC Scientometrics & Informetrics-ISSI,2019:2644-2645.
[92] GRANOVETTER M S. The strength of weak ties:a network theory revisited[J]. Sociological theory,1983,1(1):201-233.
[93] WEI L, XU H, WANG Z, et al. Topic detection based on weak tie analysis:a case study of LIS research[J]. Journal of data and information science, 2017, 1(4):81-101.
[94] JULIEN P A, ANDRIAMBELOSON E, RAMANGALAHY C. Networks, weak signals and technological innovations among SMEs in the land-based transportation equipment sector[J]. Entrepreneurship & regional development, 2004, 16(4):251-269.
[95] ZHAO J, WU J, XU K. Weak ties:subtle role of information diffusion in online social networks[J]. Physical review E, 2010, 82(1):016105.
[96] 刘俊婉,丁凯悦,王菲菲,等.科学合作的弱关系、强关系以及超级关系研究[J].科学学研究,2017,35(4):500-510,543.
[97] YOO S H, WON D K. Simulation of weak signals of nanotechnology innovation in complex system[J]. Sustainability, 2018, 10(2):486-499.
[98] 许海云,武华维,罗瑞,等.基于多元关系融合的科技文本主题识别方法研究[J].中国图书馆学报,2019,45(1):82-94.
[99] JENSEN S, LIU X, YU Y, et al. Generation of topic evolution trees from heterogeneous bibliographic networks[J]. Journal of informetrics, 2016, 10(2):606-621.
[100] ZHANG D, YIN J, ZHU X, et al. Metagraph2vec:complex semantic path augmented heterogeneous network embedding[C]//Pacific-Asia conference on knowledge discovery and data mining. Melbourne:Springer,2018:196-208.
[101] 刘彤, 杨冠灿, 侯元元. 基于多重关系整合的专利网络分析方法研究与应用[J]. 情报理论与实践, 2016, 39(2):59-63.
[102] SHI C, HU B, ZHAO X,et al.Heterogeneous information network embedding for recommendation[J].IEEE transactions on knowledge and data engineering,2019,31(2):357-370.
[103] 马蒙周. 基于多层网络的关键基因识别方法研究[D].西安:西安理工大学,2018.
[104] GAUVIN L, PANISSON A, CATTUTO C. Detecting the community structure and activity patterns of temporal networks:a non-negative tensor factorization approach[J]. PloS one, 2014, 9(1):e86028.
[105] 罗永恩, 胡继承, 徐茜. 基于超图的多模态关联特征处理方法[J]. 计算机工程, 2017,43(1):226-230.
[106] BENSON A R, GLEICH D F, LESKOVEC J. Higher-order organization of complex networks[J]. Science, 2016, 353(6295):163-166.
[107] XU J, WICKRAMARATHNE T L, CHAWLA N V. Representing higher-order dependencies in networks[J]. Science advances, 2016, 2(5):e1600028.
[108] LAMBIOTTE R, ROSVALL M, SCHOLTES I. From networks to optimal higher-order models of complex systems[J]. Nature physics, 2019, 15(4):313-320.