知识组织

网络社交平台中社群标签生成研究

  • 蒋武轩 ,
  • 易明 ,
  • 熊回香 ,
  • 童兆莉
展开
  • 华中师范大学信息管理学院 武汉 430079
蒋武轩(ORCID:0000-0001-9621-4318),博士研究生,E-mail:jiangchair@mails.ccnu.edu.cn;易明(ORCID:0000-0002-4864-6025),教授,博士生导师;熊回香(ORCID:0000-0001-9956-3396),教授,博士生导师;童兆莉(ORCID:0000-0003-1621-4356),博士研究生。

收稿日期: 2020-12-09

  修回日期: 2021-03-18

  网络出版日期: 2021-06-02

基金资助

本文系国家社会科学基金年度项目"融合知识图谱和深度学习的在线学术资源挖据与推荐研究"(项目编号:19BTQ005)研究成果之一。

Research on the Generation of Community Tags in Network Social Platform

  • Jiang Wuxuan ,
  • Yi Ming ,
  • Xiong Huixiang ,
  • Tong Zhaoli
Expand
  • School of Information Management, Central China Normal University, Wuhan 430079

Received date: 2020-12-09

  Revised date: 2021-03-18

  Online published: 2021-06-02

摘要

[目的/意义] 基于网络社交平台中社群话题及用户兴趣挖掘而生成的社群标签,能够提高社群定义的及时性与准确性,解决用户信息获取、网络社群选择的困难。[方法/过程] 通过对网络社群的深入分析,发现社群特征可根据社群话题及用户兴趣予以表征。首先,利用主题提取BTM模型对网络社群话题进行主题模型训练,从而得到网络社群话题预标签;其次,根据社群成员兴趣标签网络中不同类型的重要节点指标,利用TOPSIS多指标综合评价方法挖掘成员整体兴趣,从而得到网络社群成员兴趣预标签。综合两者结果生成社群标签并进行优化,且以"豆瓣小组"为例进行实证。[结果/结论] 基于社群话题及成员兴趣的社群标签生成模型能够准确地挖掘主要兴趣及近期关注点,社群整体的标签生成有利于网络用户兴趣群体的选择。

本文引用格式

蒋武轩 , 易明 , 熊回香 , 童兆莉 . 网络社交平台中社群标签生成研究[J]. 图书情报工作, 2021 , 65(10) : 79 -89 . DOI: 10.13266/j.issn.0252-3116.2021.10.009

Abstract

[Purpose/significance] Community tags generated based on the mining of community topics and users' interests in network social platforms can improve the timeliness and accuracy of the definition of community, and solve the difficulties of user information acquisition and network community selection. [Method/process] Through in-depth analysis of the network community, it was determined that the community features can be represented according to the community topics and users' interests. Firstly, the BTM model of topic extraction was used to train the topic model of network social topics, and the pre-label of network social topics was obtained. Then, based on the different important node indexes of community members' interest tag network, the TOPSIS multi-index comprehensive evaluation method was used to mine the overall interest of members, so as to obtain the interest pre-label of members of the network community. After combining the two results, the community tag was generated and optimized. And this paper took "Douban Group" as an example for demonstration. [Result/conclusion] The community tag generation model based on community topics and members' interests can accurately mine the main interests and recent concerns. Tag generation of the community as a whole is conducive to the selection of interest groups of network users.

参考文献

[1] 邓胜利,胡吉明.Web 2.0环境下网络社群理论研究综述[J].中国图书馆学报,2010,36(5):90-95.
[2] RHEINGOLD H. The virtual community:finding commection in a computerized world[M]. Boston:Addison-wesley longman publishing co., Inc., 1993.
[3] SIEMENS G, BAKER R S J D. Learning analytics and educational data mining:towards communication and collaboration[C]//Proceedings of the 2nd international conference on learning analytics and knowledge. Vancouver, BC:ACM, 2012:252-254.
[4] NAVARRO N D B, DA COSTA C A, BARBOSA J L V, et al. Spontaneous social network:toward dynamic virtual communities based on context-aware computing[J]. Expert systems with applications,2018,95:72-87.
[5] ZHOU T. Understanding online knowledge community user continuance:a social cognitive theory perspective[J]. Data technologies and applications,2018,52(3):445-458.
[6] 刘佩,林如鹏.网络问答社区"知乎"的知识分享与传播行为研究[J].图书情报知识,2015(6):109-119.
[7] 邓卫华,闫明星,易明. LPP视角下网络社区用户口碑信息传播行为研究[J].情报资料工作,2017(1):82-87.
[8] LIAO C C, TO P L, HSU F C,. Exploring knowledge sharing in virtual communities[J]. Online information review,2013,37(6):891-909.
[9] CHEN C, DU R, LI J, et al. The impacts of knowledge sharing-based value co-creation on user continuance in online communities[J]. Information discovery and delivery,2017,45(4):227-239.
[10] XIE H R, LI Q, MAO X D, et al. Mining latent user community for tag-based and content-based search in social media[J]. Computer journal, 2014, 57(9):1415-1430.
[11] 李文根.基于社区问答系统的中文短文本标签生成研究[D].南京:南京大学,2017.
[12] 蒋武轩,熊回香,叶佳鑫,等.网络社交平台中社群标签动态生成研究[J].数据分析与知识发现,2019,3(10):98-109.
[13] 李雷,朱玉婷,施化吉,等.社会网络中基于U_BTM模型的主题挖掘[J].计算机应用研究,2017,34(1):132-135,146.
[14] 李敬,印鉴,刘少鹏,等.基于话题标签的微博主题挖掘[J].计算机工程,2015,41(4):30-35.
[15] 林鑫,周知.用户认知对标签使用行为的影响分析——基于电影社会化标注数据的实证分析[J].情报理论与实践,2015,38(10):85-88.
文章导航

/