情报研究

新兴研究主题在演化路径上的关键时间点研究

  • 许海云 ,
  • 张慧玲 ,
  • 武华维 ,
  • 刘自强
展开
  • 1 山东理工大学管理学院 淄博 255000;
    2 太原市图书馆 太原 030024;
    3 西北师范大学档案馆 兰州 730070;
    4 南京师范大学新闻与传播学院 南京 210023
许海云(ORCID:0000-0002-7453-3331),教授,博士,E-mail:xuhaiyunneomo@gmail.com;张慧玲(ORCID:0000-0001-5155-6357),馆员,硕士;武华维(ORCID:0000-0001-6969-407X),馆员,博士;刘自强(ORCID:0000-0003-1814-8655),讲师,博士。

收稿日期: 2020-09-03

  修回日期: 2020-11-30

  网络出版日期: 2021-06-02

基金资助

本文系国家自然科学基金项目"基于科学-技术主题关联分析的创新演化路径识别方法研究"(项目编号:71704170)和中国科学院十三五信息化项目"面向干细胞领域知识发现的科研信息化应用"(项目编号XXH13506)研究成果之一。

Key Time-points of Emerging Research Topic on their Evolution Path

  • Xu Hainyun ,
  • Zhang Huiling ,
  • Wu Huawei ,
  • Liu Ziqiang
Expand
  • 1 Business School, Shandong University of Technology, Zibo 255000;
    2 Taiyuan Library, Taiyuan 030024;
    3 Archives of Northwest Normal University, Lanzhou 730070;
    4 School of Journalism and Communication, Nanjing Normal University, Nanjing 210023

Received date: 2020-09-03

  Revised date: 2020-11-30

  Online published: 2021-06-02

摘要

[目的/意义] 探讨不同关键时间点对新兴研究主题影响力的不同表征。[方法/过程] 首先,综述当前拐点时间的应用场景及获取方法,并根据知识扩散中网络节点增长机制与特征构建新兴研究主题在创新演化路径上的拐点识别方法。其次,对比分析首次出现时间、平均时间和拐点时间的差异,探讨新兴研究主题产生影响力的最早时间点。最后,以干细胞研究主题为实证领域,分析不同关键时间点对新兴研究主题影响力的不同表征能力。[结果/结论] 拐点时间可以比平均值时间提前识别有影响力的主题。首次出现时间、平均时间和拐点时间在主题发展路径中意义区别显著,新兴研究主题在创新路径中分布时间的确定需要综合3种不同类型的关键时间点。

本文引用格式

许海云 , 张慧玲 , 武华维 , 刘自强 . 新兴研究主题在演化路径上的关键时间点研究[J]. 图书情报工作, 2021 , 65(8) : 51 -64 . DOI: 10.13266/j.issn.0252-3116.2021.08.006

Abstract

[Purpose/significance] To explore the different representations of the impact of different key time points on emerging research topics.[Method/process] Firstly, we summarized the application scenarios and acquisition methods of the current turning point time, and constructed the turning point identification method of emerging research topics on the innovation evolution path according to the growth mechanism and characteristics of network nodes in the knowledge diffusion. After that, the differences between "first appearance time" "average time" and "inflection point time" are compared and analysed, and explored the earliest point in time when emerging research topics have an impact. Finally, taking stem cell research topics as an empirical field, we analysed the different representational capabilities of different key time points on the influence of emerging research topics.[Result/conclusion] The turning point time can identify influential topics earlier than the "average time". "First appearance time" "average time" and "inflection point time" have significant differences in the topic evolution path. The determination of the distribution time of emerging research topics in the innovation path requires the synthesis of three different types of key time points.

参考文献

[1] European Research Council. Identification of "Frontier Research" and "Emerging Research Areas" in research proposals:a bibliometric approach[EB/OL].[2020-02-10]. https://erc.europa.eu/event/identification-frontier-research-and-emerging-research-areas-research-proposals-bibliometric.
[2] REISS T, VIGNOLA-GAGNÉ E, KUKK P, et al. ERACEP-emerging research areas and their coverage by ERC-supported projects[R]. Belgium:Technical Report European Research Council, 2013.
[3] Foresight and Understanding from Scientific Exposition (FUSE)[EB/OL].[2020-02-10]. https://www.iarpa.gov/index.php/research-programs/fuse.
[4] WEI L, XU H Y, HU Z Y, et al. Multiple-pattern analysis and prediction of topic evolution path based on topic correlation:a case study of information science research[J]. Library and information service, 2016, 60(3):71-81.
[5] XU, H Y, YUE Z H, LUO R, et al. A study on the multidimensional scientometric indicators to detect the emerging topics[C]//Proceedings of the 17th international conference on scientometrics and informetrics (ISSI 2019). Italy:Sapienza University of Rome, 2019:2518-2519.
[6] YOUNG P. Technological growth curves:a competition of forecasting models[J]. Technological forecasting & social change, 1993, 44(4):375-389.
[7] KUCHARAVY D, GUIO R D.Problems of forecast[J]. ETRIA TRIZ future, 2005:219-235.
[8] KUCHARAVY D, GUIO R D. Application of S-shaped curves[J]. Procedia engineering, 2011, 9:559-572.
[9] KUCHARAVY D, GUIO R D. Logistic substitution model and technological forecasting[J]. Procedia engineering, 2011, 9:402-416.
[10] NGUIMKEU P. A simple selection test between the Gompertz and Logistic growth models[J]. Technological forecasting & social change, 2014, 88(Oct.):98-105.
[11] MEADE N, ISLAM T. Modelling and forecasting the diffusion of innovation-a 25-year review[J]. International journal of forecasting, 2006, 22(3):529-545.
[12] DAIM T U, RUEDA G, MARTIN H, et al. Forecasting emerging technologies:use of bibliometrics and patent analysis[J]. Technological forecasting and social change, 2006, 73(8):981-1012.
[13] KYEBAMBE M N, CHENG G, HUANG Y Q, et al. Forecasting emerging technologies:a supervised learning approach through patent analysis[J]. Technological forecasting and social change, 2017,125:236-244.
[14] 邵帅. 不确定性、经济预测与拐点[J]. 金融博览, 2019(4):35.
[15] 邱耕田. 发展的"拐点":基于科学发展观视角的分析[J]. 学习与探索, 2009(3):26-31.
[16] 张学山. 经济学中的"拐点"与数学上的"拐点"[J]. 高等数学研究2012,15(5):29-31.
[17] 解元元. 也谈拐点的定义[J]. 高等数学研究, 2003, 6(3):11-12.
[18] WASOW W. Linear turning point theory[M]. New York:Springer-Verlag, 1985.
[19] 郑步青, 邹红霞, 胡欣杰. 基于拐点的网络舆情预测研究[J]. 计算机科学, 2018, 45(S2):539-541,575.
[20] CAI F. Demographic transition, demographic dividend, and lewis turning point in China[J]. Economic research journal, 2010, 3(2):107-119.
[21] ROSTOW W, LEWIS W. The evolution of the international economic order[M]//International economics policies & their theoretical foundations. New York:Academic Press, 1982:15-37.
[22] WATANABE S. The lewisian turning point and international migration:the case of Japan[J]. Asian and Pacific migration journal:APMJ, 1994,3(1):119-147.
[23] EGLI H, STEGER T M. A dynamic model of the environmental kuznets curve:turning point and public policy[J]. Environmental and resource economics, 2007, 36(1):15-34.
[24] 华中炜, 郑伟. 库兹涅茨拐点决定中国未来经济走向[J]. 银行家, 2011(6):31-33.
[25] 魏君英, 吴亚平, 吴兆军. 基于库兹涅茨拐点的中国城乡居民收入差距与经济增长关系的实证研究[J]. 中国农业资源与区划, 2015, 36(6):112-119.
[26] 朱小黄. 蒙格斯拐点及其学理[J]. 金融博览, 2019(2):37-39.
[27] 石陆魁, 秦志娇, 闫会强. 基于最小方差的股市拐点预测方法[J]. 计算机应用研究, 2017,34(11):3373-3378.
[28] CHRISTOU C, CUNADO J, GUPTA R, et al. Economic policy uncertainty and stock market returns in pacificrim countries:evidence based on a bayesian panel VAR model[J]. Journal of multinational financial management, 2017,40:92-102.
[29] PETROVSKA M, KRSTEVSKA A, NAUMOVSKI N. Forecasting macedonian business cycle turning points using qual Var model[J]. Nephron clinical practice, 2016, 5(3):61-78.
[30] SCHREIBER S, SOLDATENKOVA N. Anticipating business-cycle turning points in real time using density forecasts from a VAR[J]. Journal of macroeconomics, 2016, 47:166-187.
[31] ANDERSSON E, BOCK D, FRISEN M. Some statistical aspects of methods for detection of turning points in business cycles[J]. Journal of applied statistics, 2006, 33(3):257-278.
[32] ANDERSSON E, BOCK D, FRISÉN M. Detection of turning points in business cycles[J]. Journal of business cycle measurement and analysis, 2004(1):93-108.
[33] FUKUDA K. Forecasting growth cycle turning points using US and Japanese professional forecasters[J]. Empirical economics, 2009, 36(2):243-267.
[34] CANOVA F, CICCARELLI M. Forecasting and turning point predictions in a bayesian panel VAR model[J]. Journal of econometrics, 2004, 120(2):327-359.
[35] BILLIO M, CASARIN R, RAVAZZOLO F, et al. Combination schemes for turning point predictions[J]. The quarterly review of economics and finance, 2012, 52(4):402-412.
[36] KOSKINEN L, OLLER L E. A classifying procedure for signalling turning points[J].Journal of forecasting,2004, 23(3):197-214.
[37] PELÀEZ R F. Ex ante forecasts of business-cycle turning points[J]. Empirical economics, 2007, 32:239-246.
[38] KULENDRAN N, WONG K K F. Determinants versus composite leading indicators in predicting turning points in growth cycle[J]. Journal of travel research, 2011, 50(4):417-430.
[39] JUDGE G. Turning-point errors and directional errors in forecasting:a note[J]. Journal of macroeconomics, 1985, 7(2):261-263.
[40] KULENDRAN N, WONG K K F. Predicting quarterly Hong Kong tourism demand growth rates, directional changes and turning points with composite leading indicators[J]. Tourism economics, 2009, 15(2):307-322.
[41] 邓华丽, 李修全. 基于混沌时间序列分析的股票价格拐点预测方法[J]. 统计与决策,2007(9):19-20.
[42] REISS J D. The analysis of chaotic time series[D]. Atlanta:Georgia Institute of Technology, 2001.
[43] LI X, DEN Z. Prediction of turning points for chaotic time series using ensemble ANN model[C]//20087th world congress on intelligent control and automation. Chongqing:IEEE, 2008:3459-3464.
[44] SCHARF J H. The position of the turning points in the growth curves during the intrauterine period in homo sapiens[J]. Acta anatomica, 1974, 88(4):520-540.
[45] 詹新宇. 广西产业结构服务化的拐点预测及对策探讨——基于增长曲线模型[J].广西社会科学,2011(4):24-28.
[46] HUBBERT M K. Energy resources:a report to the committee on natural resources of the national academy of Sciences——National research council[R]. Washington:National Academy of Sciences-National Research Council, 1962.
[47] 田红丽,李成群,闫会强.缠论和相似灰色模型的预测方法在股价拐点预测中的研究应用[J].计算机应用研究,2020,37(6):1666-1669,1678.
[48] JACKSON B P. A turning point for Europe's east[J]. Policy review, 2010(160):49-62.
[49] QU P P. Mobile communication service income prediction method based on grey buffer operator theory[J]. Grey systems:throry and application,2014,4(2):250-259.
[50] CLAVERIA O, MONTE E, TORRA S. Tourism demand forecasting with neural network models:different ways of treating information[J]. International journal of tourism research, 2015, 17(5):492-500.
[51] 胡悦. 金融市场中的神经网络拐点预测法[J]. 金融经济, 2017(18):81-82.
[52] 陈建华. 人工神经网络对企业发展拐点的预测研究[J]. 技术经济与管理研究, 2003(1):31-33.
[53] 马芳芳, 王京宝.基于RBF神经网络的股票三类拐点的分析[J]. 科技信息(学术研究), 2008(6):211-214.
[54] GUO P C, WEI L, CHANG W X, et al. The contribution of logistics industry to economic growth based on logis model[C]//2010 international conference of information science and management engineering. Shanxi:IEEE, 2010:489-492.
[55] GOLDER P N, TELLIS G J. Will it ever fly? Modeling the takeoff of really new consumer durables[J]. Marketing science, 1997, 16(3):256-270.
[56] ANDERSEN B. The hunt for S-shaped growth paths in technological innovation:a patent study[J]. Journal of volutionary economics, 1999,9(4):487-526.
[57] XU H, WINNINK J, YUE Z, et al. Multidimensional scientometric indicators for the detection of emerging research topics[J]. Technological forecasting and social change, 2021, 163:120490.
[58] TRAAG V A, WALTMAN L, VANECK N J. From louvain to leiden:guaranteeing well-connected communities.[J]. Scientific reports, 2019, 9(1):1-12.
[59] 曹艺文, 许海云, 武华维, 等. 基于引文曲线拟合的新兴研究主题的突破性预测——以干细胞领域为例[J]. 图书情报工作, 2020, 64(5):100-113.
文章导航

/