情报研究

网络突发事件中社交机器人情感的交互式影响机制研究

  • 马晓悦 ,
  • 孟啸 ,
  • 王镇 ,
  • 刘益东
展开
  • 1 西安交通大学新闻与新媒体学院 西安 710049;
    2 上海市浦东微热点大数据研究院 上海 201203
马晓悦(ORCID:0000-0003-4932-6450),特聘研究员,博士,博士生导师,E-mail:xyma_mail@163.com;孟啸(ORCID:0000-0002-7551-5856),硕士研究生;王镇(ORCID:0000-0002-1859-7605),硕士研究生;刘益东(ORCID:0000-0002-0771-6365),学士。

收稿日期: 2020-10-16

  修回日期: 2021-01-11

  网络出版日期: 2021-06-02

基金资助

本文系教育部人文社会科学研究规划基金"信息协同视角下基于可视化媒介的智慧应急响应行为研究"(项目编号:19YJA870009)和陕西省自然科学基础研究计划一般项目-面上项目"基于散射-叠加效应的新媒体信息演化模型构建及事件类别判定研究"(项目编号:2020JM-056)研究成果之一。

Interactive Sentimental Influence Mechanism of Social Bots During an Emergency Event

  • Ma Xiaoyue ,
  • Meng Xiao ,
  • Wang Zhen ,
  • Liu Yidong
Expand
  • 1 School of Journalism and New Media, Xi'an Jiaotong University, Xi'an 710049;
    2 Wei Re Dian Big Data Research Institute, Shanghai 201203

Received date: 2020-10-16

  Revised date: 2021-01-11

  Online published: 2021-06-02

摘要

[目的/意义] 细化社交机器人对网民情感的干预机制,同时从实践上为网络突发事件舆情治理提供建议参考。[方法/过程] 以仁济医院赵晓菁事件为例,利用朴素贝叶斯方法计算微博情感倾向,通过构建向量自回归模型(VAR)并进行格兰杰因果检验、脉冲响应分析以及方差分解分析,确定社交机器人、意见领袖与普通用户在事件生命周期各阶段的情感关系。[结果/结论] 社交机器人、意见领袖与普通用户的情感关系随舆情阶段演进发生变化,在爆发期,社交机器人放大了意见领袖对普通用户的情感影响;在成熟期,社交机器人影响式微,普通用户的情感反作用于社交机器人与意见领袖;在衰退期,三者保持较为独立的情感关系。此外,社交机器人的影响策略具有隐匿性和间接性特征。

本文引用格式

马晓悦 , 孟啸 , 王镇 , 刘益东 . 网络突发事件中社交机器人情感的交互式影响机制研究[J]. 图书情报工作, 2021 , 65(8) : 74 -84 . DOI: 10.13266/j.issn.0252-3116.2021.08.008

Abstract

[Purpose/significance] This study further elaborates the intervention mechanism of social bots on netizens' sentiment and provides suggestions for the management of public opinions in online emergencies.[Method/process] Taking the incident of Zhao Xiaojing in Renji Hospital as an example, with the Naive Bayes method calculating Weibo sentiment orientation, this study used the Granger causality test, impulse response analysis, and variance decomposition analysis based on the vector autoregression model (VAR) to judge the sentiment relationship between social bots, opinion leaders and ordinary users at all stages of the event life cycle.[Result/conclusion] The sentiment relationship between social bots, opinion leaders, and ordinary users changed with the evolution of the event. In the outbreak stage, social bots amplified the sentiment influence of opinion leaders on ordinary users. In the mature stage, the influence of social bots declined, and the sentiment of ordinary users reacted to social bots and opinion leaders. In the decline period, the three maintained a relatively independent sentiment relationship; Besides, the influence strategies of social bots were both insidious and indirect.

参考文献

[1] STIEGLITZ S, BUNKER D, MIRBABAIE M, et al. Sense-making in social media during extreme events[J]. Journal of contingencies and crisis management, 2018, 26(1):4-15.
[2] HAGEN L, NEELY S, KELLER T E, et al. Rise of the machines? examining the influence of social bots on a political discussion network[J/OL]. Social science computer review, 2020.[2020-08-20].https://journals.sagepub.com/doi/abs/10.1177/0894439320908190#articleCitationDownloadContainer.DOI:10.1177/0894439320908190.
[3] ALLCOTT H, GENTZKOW M. Social media and fake news in the 2016 election[J]. Journal of economic perspectives, 2017, 31(2):211-36.
[4] GUPTA A, LAMBA H, KUMARAGURU P, et al. Faking sandy:characterizing and identifying fake images on Twitter during hurricane sandy[C]//Proceedings of the 22nd international conference on World Wide Web. New York:ACM,2013:729-736.
[5] YANG K C, TORRES-LUGO C, MENCZER F. Prevalence of low-credibility information on twitter during the covid-19 outbreak[J]. arXiv preprint arXiv:2004.14484, 2020.
[6] 彭广林.潜舆论·舆情主体·综合治理:网络舆情研究的情感社会学转向[J].湖南师范大学社会科学学报, 2020, 49(5):142-149.
[7] FERRARA E, VAROL O, DAVIS C, et al. The rise of social bots[J]. Communications of the ACM, 2016, 59(7):96-104.
[8] HOFEDITZ L, EHNIS C, BUNKER D, et al. Meaningful use of social bots? possible applications in crisis communication during disasters[C]//Proceedings of the 27th European conference on information systems. Stockholm & Uppsala, Sweden:AISeL. 2019:1-16.
[9] BOSHMAF Y, LOGOTHETIS D, Siganos G, et al. Íntegro:leveraging victim prediction for robust fake account detection in large scale OSNS[J]. Computers & security, 2016, 61:142-168.
[10] HURTADO S, RAY P, MARCULESCU R. Bot detection in reddit political discussion[C]//Proceedings of the fourth international workshop on social sensing. New York:ACM, 2019:30-35.
[11] DAVIS C A, VAROL O, FERRARA E, et al. Botornot:a system to evaluate social bots[C]//Proceedings of the 25th international conference companion on World Wide Web. New York:ACM, 2016:273-274.
[12] KUDUGUNTA S, FERRARA E. Deep neural networks for bot detection[J]. Information sciences, 2018, 467:312-322.
[13] BESSI A, FERRARA E. Social bots distort the 2016 U.S. Presidential election online discussion[J]. First Monday, 2016, 21(11).
[14] BOICHAK O, JACKSON S, HEMSLEY J, et al. Automated diffusion? bots and their influence during the 2016 US presidential election[C]//International conference on information. Cham:Springer, 2018:17-26.
[15] BASTOS M T, MERCEA D. The public accountability of social platforms:lessons from a study on bots and trolls in the Brexit campaign[J]. Philosophical transactions of the royal society a mathematical physical and engineering sciences, 2018, 376(2128):20180003.
[16] 师文,陈昌凤.分布与互动模式:社交机器人操纵Twitter上的中国议题研究[J].国际新闻界,2020,42(5):61-80.
[17] 张洪忠,段泽宁,杨慧芸.政治机器人在社交媒体空间的舆论干预分析[J].新闻界,2019(9):17-25.
[18] BRACHTEN F, STIEGLITZ S, HOFEDITZ L, et al. Strategies and influence of social bots in a 2017 German state election-a case study on Twitter[J]. arXiv preprint arXiv:1710.07562, 2017.
[19] YUAN X, SCHUCHARD R J, CROOKS A T. Examining emergent communities and social bots within the polarized online vaccination debate in Twitter[J]. Social Media + Society, 2019, 5(3):2056305119865465.
[20] ALLEM J P, FERRARA E, UPPU S P, et al. E-cigarette surveillance with social media data:social bots, emerging topics, and trends[J]. JMIR public health and surveillance, 2017, 3(4):e98.
[21] BEIGI G, HU X, MACIEJEWSKI R, et al. An overview of sentiment analysis in social media and its applications in dis aster relief[M]//PEDRYCZ W, CHEN S M. Sentiment analysis and ontology engineering. Cham:Springer,2016:313-340.
[22] 毛太田,蒋冠文,李勇,等.新媒体时代下网络热点事件情感传播特征研究[J].情报科学,2019,37(4):29-35,96.
[23] STIEGLITZ S, DANG-XUAN L. Emotions and information diffusion in social media-sentiment of microblogs and sharing behavior[J]. Journal of management information systems, 2013, 29(4):217-248.
[24] ZHANG W, WANG M, ZHU Y. Does government information release really matter in regulating contagion-evolution of negative emotion during public emergencies? from the perspective of cognitive big data analytics[J]. International journal of information management, 2020, 50:498-514.
[25] 周建,刘炎宝,刘佳佳.情感分析研究的知识结构及热点前沿探析[J].情报学报,2020,39(1):111-124.
[26] ASIF M, ISHTIAQ A, AHMAD H, et al. Sentiment analysis of extremism in social media from textual information[J]. Telematics and informatics, 2020, 48:101345.
[27] ASLAM F, AWAN T M, SYED J H, et al. Sentiments and emotions evoked by news headlines of coronavirus disease (COVID-19) outbreak[J]. Humanities and social sciences communications, 2020, 7(1):1-9.
[28] 安璐,吴林.融合主题与情感特征的突发事件微博舆情演化分析[J].图书情报工作,2017,61(15):120-129.
[29] 张鹏,崔彦琛,兰月新,等.基于扎根理论与词典构建的微博突发事件情感分析与舆情引导策略[J].现代情报,2019,39(3):122-131,143.
[30] 邓君,孙绍丹,王阮,等.基于Word2Vec和SVM的微博舆情情感演化分析[J].情报理论与实践,2020,43(8):112-119.
[31] 吴鹏,应杨,沈思.基于双向长短期记忆模型的网民负面情感分类研究[J].情报学报,2018,37(8):845-853.
[32] LAZARSFELD P F,BERELSON B,GAUDET H. The people's choice[M]. New York:Columbia University Press, 1948:434-445.
[33] BAMAKAN S M H, NURGALIEV I, QU Q. Opinion leader detection:a methodological review[J]. Expert systems with applications, 2019, 115:200-222.
[34] 王佳敏,吴鹏,陈芬,等.突发事件中意见领袖的识别和影响力实证研究[J].情报学报,2016,35(2):169-176.
[35] 王国华,张剑,毕帅辉.突发事件网络舆情演变中意见领袖研究——以药家鑫事件为例[J].情报杂志,2011,30(12):1-5.
[36] 李纲,陈璟浩.突发公共事件网络舆情研究综述[J].图书情报知识,2014, 32(2):111-119.
[37] 谢科范,赵湜,陈刚,等.网络舆情突发事件的生命周期原理及集群决策研究[J].武汉理工大学学报(社会科学版),2010,23(4):482-486.
[38] PESARAN H H, SHIN Y. Generalized impulse response analysis in linear multivariate models[J]. Economics letters, 1998, 58(1):17-29.
[39] 高铁梅.计量经济分析方法与建模[M].北京:清华大学出版社,2006:249,270.
[40] ZHANG L, WEI J, BONCELLA R J. Emotional communication analysis of emergency microblog based on the evolution life cycle of public opinion[J]. Information discovery and delivery, 2020, 48(3):151-163.
[41] 洪巍,王虎.政府监管下的网络推手与意见领袖合谋行为研究——基于前景理论的演化博弈分析[J].经济与管理,2019,33(3):18-25.
[42] STELLA M, CRISTOFORETTI M, DE DOMENICO M. Influence of augmented humans in online interactions during voting events[J]. PloS one, 2019, 14(5):e0214210.
[43] 张梦雅,王秀红.精细加工可能性模型研究现状及应用领域分析[J].图书情报研究,2018,11(4):73-79,85.
[44] 王志英,邓航宇,王念新,等.问答社区信息安全突发事件应急知识传播模型研究[J].情报杂志,2019,38(10):136-145.
文章导航

/