情报研究

社交媒体虚假健康信息特征识别

  • 张帅
展开
  • 武汉大学信息管理学院 武汉 430072 武汉大学信息资源研究中心 武汉 430072
张帅(ORCID:0000-0002-5792-877X),博士研究生,E-mail:zs09053@163.com。

收稿日期: 2020-11-15

  修回日期: 2021-02-02

  网络出版日期: 2021-06-02

基金资助

本文系湖北文化名家专项基金资助研究成果之一。

Study on Feature Identification of False Health Information on Social Media

  • Zhang Shuai
Expand
  • School of Information Management, Wuhan University, Wuhan 430072 Center for Studies of Information Resources, Wuhan University, Wuhan 430072

Received date: 2020-11-15

  Revised date: 2021-02-02

  Online published: 2021-06-02

摘要

[目的/意义] 识别社交媒体虚假健康信息特征,构建社交媒体虚假健康信息特征清单,以期为社交媒体虚假健康信息特征的测度提供一定理论支撑,也为用户和社交媒体平台判别虚假健康信息提供有益参考。[方法/过程] 采集1 004条社交媒体健康数据,利用程序化编码抽取社交媒体虚假健康信息的关键特征,运用卡方检验和方差分析揭示社交媒体虚假健康信息的显著特征,并构建社交媒体虚假健康信息特征清单。[结果/结论] 研究结果表明,社交媒体虚假健康信息特征具有表面特征、语义特征和来源特征3个维度、11个主要特征以及29个子特征。其中,社交媒体上食品安全主题的虚假健康信息在"术语包装"特征上表现得更为显著;"夸大事实"为社交媒体上常见疾病主题虚假健康信息的显著特征;社交媒体上养生保健主题的虚假健康信息具有"元数据缺失"和"假借权威"显著特征。

本文引用格式

张帅 . 社交媒体虚假健康信息特征识别[J]. 图书情报工作, 2021 , 65(9) : 70 -78 . DOI: 10.13266/j.issn.0252-3116.2021.09.008

Abstract

[Purpose/significance] This study identifies the features of false health information on social media and construct a list of false health information characteristics on social media, in order to provide certain theoretical support for the measurement of false health information features on social media, and also provide a useful reference for users and social media service platforms to distinguish false health information.[Method/process] 1 004 pieces of empirical data from social media were collected, and the key features of false health information were extracted by programmatic coding. Then the chi-square test and analysis of variance were adopted to identify significant features of health misinformation. In addition, this study developed a list of features to identify health misinformation on social media.[Result/conclusion] It was shown that the features of false health information on social media had three dimensions:surface features, semantic features, and source features. There were 11 main features and 29 sub-features. It was found that the features of "term packaging" on food safety topic was more notable than other topics; "exaggerated facts" on common diseases topic was more significant than other topics; the features of "lack of meta-information" and "fake authority" on healthcare topic were more prominent than other topics.

参考文献

[1] 金晓玲, 冯慧慧, 周中允. 微信朋友圈中健康信息传播行为研究[J]. 管理科学, 2017, 30(1):73-82.
[2] 徐孝婷, 赵宇翔, 朱庆华. 在线健康社区老年用户健康信息需求实证研究[J]. 图书情报工作, 2019, 63(10):87-96.
[3] ZHANG X, WEN D, LIANG J, et al. How the public uses social media WeChat to obtain health information in china:a survey study[J]. BMC medical informatics and decision making, 2017, 17(2):71-79.
[4] CHOU W Y S, HUNT Y M, BECKJORD E B, et al. Social media use in the united states:implications for health communication[J]. Journal of medical internet research, 2009, 11(4):e48.
[5] 侯筱蓉, 付扬, 陈娟. 基于微信平台的健康信息用户感知和效用研究[J]. 现代情报, 2016, 36(10):89-93.
[6] 李月琳, 张秀, 王姗姗. 社交媒体健康信息质量研究:基于真伪健康信息特征的分析[J]. 情报学报, 2018(3):294-304.
[7] 莫祖英, 马费成. 网络环境下信息资源质量控制的博弈分析[J]. 情报理论与实践, 2012, 35(8):26-30.
[8] GOLDACRE B. Media misinformation and health behaviors[J]. The lancet oncology, 2009, 10(9):848.
[9] 中国互联网络信息中心. 第44次中国互联网络发展状况统计报告[EB/OL].[2020-08-21]. http://www.cnnic.net.cn/hlwfzyj/hlwxzbg/hlwtjbg/201908/P020190830356787490958.pdf.
[10] 李月琳, 张秀. 大学生社交媒体健康信息甄别能力研究[J]. 图书情报知识, 2018(1):66-77.
[11] PEW RESEARCH CENTER. Mobile technology and its social impact survey 2018[EB/OL].[2020-08-21]. https://www.pewresearch.org.
[12] ZHANG Z, ZHANG Z, LI H. Predictors of the authenticity of internet health rumors[J]. Health information & libraries journal, 2015, 32(3):195-205.
[13] DIVIANI N, PUTTE B, GIANI S, et al. Low health literacy and evaluation of online health information:a systematic review of the literature[J]. Journal of medical internet research, 2015, 17(5):e112.
[14] 宋士杰, 赵宇翔, 宋小康, 等. 互联网环境下失真健康信息可信度判断的影响因素研究[J]. 中国图书馆学报, 2019, 45(4):72-85.
[15] 袁建霞, 冷伏海. "信息疫情"应对中的情报调研和分析[J]. 竞争情报, 2020, 16(3):9-13.
[16] 王世伟. 略论"信息疫情"十大特征[J]. 图书馆杂志, 2020, 39(3):19-23.
[17] DEVINE T, BRODERICK J, HARRIS L M, et al. Making quality health websites a national public health priority:toward quality standards[J]. Journal of medical internet research, 2016, 18(8):e211.
[18] 邓胜利, 汪奋奋. 互联网治理视角下网络虚假评论信息识别的研究进展[J]. 信息资源管理学报, 2019(3):73-81.
[19] 吴佳芬, 马费成. 产品虚假评论文本识别方法研究述评[J]. 数据分析与知识发现, 2019, 3(9):1-15.
[20] PAL A, CHUA A Y K, GOH D H L. Does KFC sell rat? analysis of tweets in the wake of a rumor outbreak[J]. Aslib journal of information management, 2017, 69(6):660-673.
[21] BRADY J T, KELLY M E, STEIN S L. The trump effect:with no peer review, how do we know what to really believe on social media?[J]. Clinics in colon and rectal surgery, 2017, 30(4):270-276.
[22] FICHMAN R G, KOHLI R, KRISHNAN R. The role of information systems in healthcare:current research and future trends[J]. Information systems research, 2011, 22(3):419-428.
[23] TSAI H, BAGOZZI R P. Contribution behavior in virtual communities:cognitive, emotional, and social influences[J]. Management information systems quarterly, 2014, 38(1):143-164.
[24] BODE L, VRAGA E K. In related news, that was wrong:the correction of misinformation through related stories functionality in social media[J]. Journal of communication, 2015, 65(4):619-638.
[25] TANDOC JR E C, LIM Z W, LING R. Defining "fake news" a typology of scholarly definitions[J]. Digital journalism, 2018, 6(2):137-153.
[26] ZHOU J, LIU F, ZHOU H. Understanding health food messages on Twitter for health literacy promotion[J]. Perspectives in public health, 2018, 138(3):173-179.
[27] LI Y, ZHANG X, WANG S. Fake vs. real health information in social media in China[J]. Proceedings of the Association for Information Science and Technology, 2017, 54(1):742-743.
[28] RUBIN V L. On deception and deception detection:content analysis of computer-mediated stated beliefs[J]. Proceedings of the Association for Information Science and Technology, 2011, 47(1):1-10.
[29] ZHOU L, BURGOON J K, NUNAMAKER J F, et al. Automating linguistics-based cues for detecting deception in text-based asynchronous computer-mediated communications[J]. Group decision and negotiation, 2004, 13(1):81-106.
[30] LAVORGNA L, DE STEFANO M, SPARACO M, et al. Fake news, influencers and health-related professional participation on the Web:a pilot study on a social-network of people with Multiple Sclerosis[J]. Multiple sclerosis and related disorders, 2018, 25(10):175-178.
[31] DUEÑAS-GARCIA O F, KANDADAI P, FLYNN M K, et al. Patient-focused websites related to stress urinary incontinence and pelvic organ prolapse:a DISCERN quality analysis[J]. International urogynecology journal, 2015, 26(6):875-880.
[32] BOYER C, DOLAMIC L. Automated detection of HONcode website conformity compared to manual detection:an evaluation[J]. Journal of medical internet research, 2015, 17(6):e135.
[33] TAVARE A N, ALSAFI A, HAMADY M S. Analysis of the quality of information obtained about uterine artery embolization from the internet[J]. Cardiovascular and interventional radiology, 2012, 35(6):1355-1362.
[34] WINKER M A, FLANAGIN A, CHI-LUM B, et al. Guidelines for medical and health information sites on the internet:principles governing AMA Web sites[J]. Jama, 2000, 283(12):1600-1606.
[35] OTT M, CHOI Y, CARDIE C, et al. Finding deceptive opinion spam by any stretch of the imagination[C]//Proceedings of the 49th annual meeting of the NAACL-HLT. Portland:association for computational linguistics, 2011:309-319.
[36] SHOJAEE S, MURAD M A A, BIN AZMAN A, et al. Detecting deceptive reviews using lexical and syntactic features[C]//International conference on intelligent systems design and applications. selangor, Malaysia:IEEE, 2013:53-58.
[37] LI J, OTT M, CARDIE C, et al. Towards a general rule for identifying deceptive opinion spam[C]//Meeting of the Association for Computational Linguistics. Baltimore:Association for Computational Linguistics, 2014:1566-1576.
[38] JINDAL N, LIU B, LIM E P. Finding unusual review patterns using unexpected rules[C]//Proceedings of the 19th ACM international conference on information and knowledge management. Toronto:ACM, 2010:1549-1552.
[39] JINDAL N, LIU B. Opinion spam and analysis[C]//Proceedings of the 2008 international conference on web search and data mining. Stanford:ACM, 2008:219-230.
[40] MUKHERJEE A, VENKATARAMAN V, LIU B, et al. What yelp fake review filter might bedoing?[C]//Proceedings of the seventh international AAAI conference on weblogs and social media. ellevue, Washington:AAAI Press, 2013:1-10.
[41] HSIEH H F, SHANNON S E. Three approaches to qualitative content analysis[J]. Qualitative health research, 2005, 15(9):1277-1288.
[42] QSR INTERNATIONAL PTY LTD. What is nvivo[EB/OL].[2020-08-26]. https://www.qsrinternational.com/nvivo/what-is-nvivo.
[43] 刘本莹. 基于传染病模型的微信谣言传播及免疫动力学研究[D]. 温州:温州大学, 2019.
[44] WORLD HEALTH ORGANIZATION. Health-topics[EB/OL].[2020-08-26]. https://www.who.int/health-topics/.
[45] INTERNATIONAL FEDERATION OF LIBRARY ASSOCIATIONS AND INSTITUTIONS. How to spot fake news[EB/OL].[2020-08-26]. https://www.ifla.org/node/11175.
[46] CORBIN J M, STRAUSS A. Grounded theory research:procedures, canons, and evaluative criteria[J]. Qualitative sociology, 1990, 13(1):3-21.
[47] LANDIS J R, KOCH G G. The measurement of observer agreement for categorical data[J]. Biometrics, 1977, 33(1):159-174.
[48] 弗利克. 质性研究导引[M]. 孙进, 译. 重庆:重庆大学出版社, 2011:248-256.
[49] FRANCIS J J, JOHNSTON M, ROBERTSON C, et al. What is an adequate sample size? operationalising data saturation for theory-based interview studies[J]. Psychology and health, 2010, 25(10):1229-1245.
[50] ZHA X, YANG H, YAN Y, et al. Exploring the effect of social media information quality, source credibility and reputation on informational fit-to-task:moderating role of focused immersion[J]. Computers in human behavior, 2018, 79(2):227-237.
[51] 吕亚兰, 侯筱蓉, 黄成, 等. 泛在网络环境下公众网络健康信息可信度评价指标体系研究[J]. 情报杂志, 2016, 35(1):196-200.
[52] EYSENBACH G, KÖHLER C. How do consumers search for and appraise health information on the world wide web? qualitative study using focus groups, usability tests, and in-depth interviews[J]. British medical journal, 2002, 324(7337):573-577.
文章导航

/