研究论文

基于链路预测的协同药物组合推荐研究:面向疾病并发症诊疗

  • 雷鸣 ,
  • 夏梦鸽 ,
  • 汪雪锋 ,
  • 刘佳
展开
  • 1. 北京理工大学管理与经济学院 北京 100081;
    2. 中国传媒大学媒体融合与传播国家重点实验室 北京 100024
雷鸣(ORCID:0000-0003-1746-4090),博士研究生;夏梦鸽(ORCID:0000-0003-0612-5659),硕士研究生;刘佳(ORCID:0000-0003-2627-933X),副教授,在站博士后。

收稿日期: 2020-07-31

  修回日期: 2021-02-11

  网络出版日期: 2021-07-03

基金资助

本文系国家自然科学基金面上项目"生物医学领域潜在颠覆性技术识别方法研究"(项目编号:72074020)研究成果之一。

Research on Drug Combination Recommendation Based on Link Prediction for Concurrent Diseases Treatment

  • Lei Ming ,
  • Xia Mengge ,
  • Wang Xuefeng ,
  • Liu Jia
Expand
  • 1. School of Management and Economics, Beijing Institute of Technology, Beijing 100081;
    2. State Key Laboratory of Media Convergence and Communication, Communication University of China, Beijing 100024

Received date: 2020-07-31

  Revised date: 2021-02-11

  Online published: 2021-07-03

摘要

[目的/意义] 药物组合相比单一药物在临床治疗中存在多种优势,但药物数量的快速增长为药物组合筛选和推荐带来挑战,因此设计有效的预测方法为药物研发人员推荐更易产生协同作用的药物组合从而提高筛选效率具有重要意义。[方法/过程] 面向疾病并发症诊疗需求,基于链路预测构建协同药物组合推荐模型,首先利用SAO语义挖掘识别医学文献中的并发症信息,在此基础上利用医学数据库构建"疾病-药物-靶点"异质网络,并引入链路预测方法对网络进行药物作用机制的相似性评估,预测哪些药物组合更可能产生协同作用,进而依据预测结果针对某个疾病或某对并发症进行药物组合推荐。[结果/结论] 肠道疾病数据实证分析结果表明协同药物组合预测模型具有有效性和实用性。

本文引用格式

雷鸣 , 夏梦鸽 , 汪雪锋 , 刘佳 . 基于链路预测的协同药物组合推荐研究:面向疾病并发症诊疗[J]. 图书情报工作, 2021 , 65(12) : 122 -129 . DOI: 10.13266/j.issn.0252-3116.2021.12.012

Abstract

[Purpose/significance] Compared with single drug, drug combination has many advantages in clinical treatment. But the growth of drug quantity brings difficulties to drug combination screening experiment. Therefore, it is of great significance to design an effective prediction method to recommend drug combination which is more likely to produce synergistic effect for pharmaceutical staff, so as to improve the screening efficiency.[Method/process] For the need of concurrent diseases treatment, proposed a drug combination recommendation model based on link prediction, and used the SAO semantic mining to identify the complications in medical literature. On this basis, we used the medical database to build the heterogeneous "disease-drug-target" network, and introduced link prediction to evaluate the similarity of drug action mechanism, and predicted which drug combinations were more likely to have synergistic effect. Based on the prediction results, recommended a combination of drugs for a certain disease or a pair of complications.[Result/conclusion] The empirical analysis of intestinal disease data verified the practicality and efficiency of the model.

参考文献

[1] SUN X, VILAR S, TATONETTI N P. High-throughput methods for combinatorial drug discovery[J]. Science translational medicine, 2013, 5(205):205rv1.
[2] 陈畅, 马兴, 满国峰,等. 组合药物——现代药物研发的新趋势[J]. 中国实验方剂学杂志, 2012, 18(14):310-312.
[3] SUCHER N J. Searching for synergy in silico, in vitro and in vivo[J]. Synergy, 2014, 1(1):30-43.
[4] ZOU J, JI P, ZHAO Y L, et al. Neighbor communities in drug combination networks characterize synergistic effect[J]. Molecular biosystems, 2012, 8(12):3185-3196.
[5] ALAIMO S, BONNICI V, CANCEMI D, et al. DT-Web:a Web-based application for drug-target interaction and drug combination prediction through domain-tuned network-based inference[J]. BMC system biology, 2015,9(S3):S4-S4.
[6] PANG K, WAN Y W, CHOI W T, et al. Combinatorial therapy discovery using mixed integer linear programming[J]. Bioinformatics, 2014,30(10):1456-1463.
[7] 吕琳媛. 复杂网络链路预测[J]. 电子科技大学学报, 2010(5):651-661.
[8] SID, REDNER. Networks:teasing out the missing links[J]. Nature, 2008, 453(7191):47-48.
[9] YU H, BRAUN P, YILDIRIM M A, et.al. High-quality binary protein interaction map of the yeast interactome network[J]. Science, 2008, 322(5898):104-110.
[10] 贾成龙. 基于网络模型和多源数据集成预测长非编码RNA-疾病关联关系[D]. 西安:西安电子科技大学, 2017.
[11] 杨超,朱东华,衡晓帆,等. 基于语法树的SAO结构识别方法研究[J]. 图书情报工作, 2016,60(21):113-121.
[12] 杨超, 朱东华, 汪雪锋,等. 专利技术主题分析:基于SAO结构的LDA主题模型方法[J]. 图书情报工作, 2017,61(3):86-96.
[13] YOON J. Identifying technological competition trends for R&D planning using dynamic patent maps:SAO-based content analysis[J]. Scientometrics, 2013,94(1):313-331.
[14] 翟东升, 蔡文浩, 张杰,等. 基于图相似度的专利侵权检测方法研究[J]. 图书情报工作, 2018,62(5):97-105.
[15] 丁云轩, 闫雷. 数据挖掘软件SemRep的评价[J]. 中华医学图书情报杂志, 2008, 17(6):71-75.
[16] XU R, LI L, WANG Q. dRiskKB:a large-scale disease-disease risk relationship knowledge base constructed from biomedical text[J]. BMC bioinformatics, 2014, 15:105.
[17] XU K J, SONG J, ZHAO X M. The drug cocktail network[J]. BMC system biology, 2012, 6(S1):S5.
[18] CHEN X, REN B, CHEN M, et al. NLLSS:predicting synergistic drug combinations based on semi-supervised learning[J]. PLoS computational biology, 2016, 12(7):e1004975.
[19] JANSEN G, LEE A Y, EPP E, et al. Chemogenomic profiling predicts antifungal synergies[J]. Molecular systems biology, 2009, 5(1):338.
[20] 刘彦斌. 组合药物数据库构建及药物协同作用机理分析[D]. 杭州:浙江大学, 2011.
[21] RITAB A, ANJA T, JACOB B, et al. Species-specific activity of antibacterial drug combinations[J]. Nature, 2018, 559(7713):259-263.
[22] HANLEY J A, MCNEIL B J. The meaning and use of the area under a receiver operating characteristic (ROC) curve[J]. Radiology, 1982, 143(1):29-36.
[23] 蒋智华. 艾滋病合并隐孢子虫感染的研究进展[J]. 中国艾滋病性病, 2014, 20(12):955-958.
[24] CRUZ P D, PRIDEAUX L, WAGNER J, et al. Characterization of the gastrointestinal microbiota in health and inflammatory bowel disease[J]. Inflammatory bowel diseases, 2012(2):372-390.
[25] FESTEN E A M, GOYETTE P, GREEN T, et al. A meta-analysis of genome-wide association scans identifies IL18RAP, PTPN2, TAGAP, and PUS10 as shared risk loci for crohn's disease and celiac disease[J]. PLoS genetics, 2011, 7(1):e1001283.
文章导航

/