知识组织

基于事件本体的疫情知识库构建策略

  • 熊励 ,
  • 王成文 ,
  • 王锟
展开
  • 1 上海大学管理学院 上海 200444;
    2 悉尼科技大学澳大利亚人工智能研究所 悉尼 2007
熊励(ORCID:0000-0002-6527-0517),教授,博士,博士生导师;王锟(ORCID:0000-0003-2711-6233),博士研究生。

收稿日期: 2021-01-06

  修回日期: 2021-02-28

  网络出版日期: 2021-07-21

基金资助

本文系国家社会科学基金国家应急管理体系建设研究专项项目"基于人工智能机器学习和区块链技术支撑的疫情监测防控研究"(项目编号:20VYJ064)研究成果之一。

Construction Strategy of Epidemic Knowledge Base Based on Event Ontology

  • Xiong Li ,
  • Wang Chengwen ,
  • Wang Kun
Expand
  • 1 School of Management, Shanghai University, Shanghai 200444;
    2 Australian Artificial Intelligence Institute, University of Technology Sydney, Sydney 2007

Received date: 2021-01-06

  Revised date: 2021-02-28

  Online published: 2021-07-21

摘要

[目的/意义] 疫情信息碎片化和非结构化给应急决策带来了挑战。为支撑应急决策数字化和促进应急管理智能化,结合自然语言处理、事件本体实现疫情信息管理和知识表示的自动化。[方法/过程] 提出一种基于网络爬虫、自然语言处理、事件本体的领域本体知识库自动构建策略。首先,运用网络爬虫和自然语言处理进行信息采集和事件要素自动提取,在此基础上构建疫情事件本体模型。然后,设计本体构建与更新算法,通过该算法完成事件本体的自动构建与扩充。[结果/结论] 研究结果表明,该策略具备疫情信息动态管理与自动更新的可行性,且事件本体能够有效描述事件,并为知识的拓展创造条件。本研究为应急管理决策的相关研究与实践提供一定的参考。

本文引用格式

熊励 , 王成文 , 王锟 . 基于事件本体的疫情知识库构建策略[J]. 图书情报工作, 2021 , 65(14) : 138 -148 . DOI: 10.13266/j.issn.0252-3116.2021.14.016

Abstract

[Purpose/significance] The fragmented and unstructured information of the epidemic brings challenges to emergency decision-making. To support the digitization of emergency decision-making and to promote intelligent emergency management, combining natural language processing and event ontology to realize the automation of epidemic information management and knowledge representation. [Method/process] An automatic construction strategy of domain ontology knowledge base based on web crawler, natural language processing, and event ontology was proposed. First, web crawlers and natural language processing were used for information collection and automatic extraction of event elements, and an epidemic event ontology model was built on this basis. Then, the algorithms for the ontology construction and update were designed, and the automatic construction and expansion for the event ontology was completed by them. [Result/conclusion] The results show that the proposed strategy has the feasibility of dynamic management and automatic update of epidemic information, and event ontology can describe events effectively and create conditions for knowledge expansion. This study also provides a reference for the research and practice of emergency decision-making.

参考文献

[1] 曹振祥,储节旺,郭春侠.面向重大疫情防控的应急情报保障体系理论框架构建——以2019新型冠状病毒肺炎疫情防控为例[J].图书情报工作, 2020,64(15):72-81.
[2] 李进华.面向大数据时代的重大疫情信息管理理论框架及其应用[J].现代情报, 2020,40(7):25-33,51.
[3] NI Z J, RONG L L, WANG N, et al. Knowledge model for emergency response based on contingency planning system of China[J]. International journal of information management, 2019,46:10-22.
[4] 丁波涛.人工智能时代的疫情信息管理:挑战与变革[J].图书情报知识, 2020(6):109-116.
[5] LEE W B, WANG Y, WANG W M, et al. An unstructured information management system (UIMS) for emergency management[J]. Expert systems with applications, 2012,39(17):12743-12758.
[6] DORASAMY M, RAMAN M, KALIANNAN M. Integrated community emergency management and awareness system:a knowledge management system for disaster support[J]. Technological forecasting and social change, 2017,121:139-167.
[7] 郭骅,屈芳,战培志.城市应急管理情报平台构建研究[J].图书情报工作, 2018,62(6):93-104.
[8] 徐蓓蓓,杨子江,朱世伟,等.基于本体的突发事件舆情知识库建设研究[J].情报杂志, 2019,38(4):132-137.
[9] 赵又霖,庞烁,吴宗大.社会感知数据驱动下突发事件应急管理的时空语义模型构建研究[J].情报科学, 2021,39(2):44-53.
[10] 王芳,杨京,徐路路.面向火灾应急管理的本体构建研究[J].情报学报, 2020,39(9):914-925.
[11] WU H T, ZHONG B T, MEDJDOUB B. An ontological metro accident case retrieval using CBR and NLP[J]. Applied sciences, 2020,10(15):5298.
[12] 高珊,王文俊,杜磊,等.传染病应急案例共享本体模型研究[J].计算机应用, 2010,30(11):2924-2927.
[13] 方安,洪娜,高东平,等.传染病本体构建及其在知识服务平台中的应用[J].现代图书情报技术, 2012(1):7-12.
[14] HOGAN W R, WAGNER M M, BROCHHAUSEN M, et al. The Apollo structured vocabulary:an OWL2 ontology of phenomena in infectious disease epidemiology and population biology for use in epidemic simulation[J]. Journal of biomedical semantics, 2016,7:50.
[15] 陈晓慧,刘俊楠,徐立,等.COVID-19病例活动知识图谱构建——以郑州市为例[J].武汉大学学报(信息科学版), 2020,45(6):816-825.
[16] JOSHI A, KARIMI S, SPARKS R, et al. Survey of text-based epidemic intelligence:a computational linguistics perspective[J]. ACM computing surveys, 2019,52(6):119.
[17] TUDORACHE T. Ontology engineering:current state, challenges, and future directions[J]. Semantic web, 2020,11(1):125-138.
[18] LV Z M, PENG R. A novel meta-matching approach for ontology alignment using grasshopper optimization[J]. Knowledge-based systems, 2020,201:106050.
[19] ZHONG Z, LIU Z, LIU W, et al. Event ontology and its evaluation[J]. Journal of information and computational science, 2010,7(1):95-101.
[20] LIU W, JIANG L, WU Y S, et al. Topic detection and tracking based on event ontology[J]. IEEE access, 2020,8:98044-98056.
[21] ZHONG Z M, LIU Z T, LI C H, et al. Event ontology reasoning based on event class influence factors[J]. International journal of machine learning and cybernetics, 2012,3(2):133-139.
[22] GOY A, MAGRO D, ROVERA M. On the role of thematic roles in a historical event ontology[J]. Applied ontology, 2018,13(1):19-39.
[23] 刘炜,丁宁,杨竣辉,等. 针对环境污染突发事件领域的事件本体模式[J]. 计算机科学与探索, 2016,10(4):466-480.
[24] FERTIER A, BARTHE-DELANOE A M, MONTARNAL A, et al. A new emergency decision support system:the automatic interpretation and contextualisation of events to model a crisis situation in real-time[J]. Decision support systems, 2020,133:113260.
[25] 朱宇倩,廖慧敏,罗小娟,等. 安全信息认知事故的事件本体模型研究[J]. 情报杂志, 2020,39(7):151-158.
[26] SINGLE J I, SCHMIDT J, DENECKE J. Knowledge acquisition from chemical accident databases using an ontology-based method and natural language processing[J]. Safety science, 2020,129:104747.
[27] 唐英英,刘炜,刘菲京,等. 基于事件本体的Web服务动态组合[J]. 华中科技大学学报(自然科学版), 2013,41(S2):22-25.
[28] KUPTABUT S, NETISOPAKUL P. Event extraction using ontology directed semantic grammar[J]. Journal of information science and engineering, 2016,32(1):79-96.
[29] 朱文跃,刘炜,刘宗田. 基于事件本体的新闻个性化推荐[J]. 计算机工程, 2019,45(6):267-272, 279.
[30] 刘思含,刘旭红,刘秀磊. 事件本体表示模型与构建综述[J]. 北京信息科技大学学报(自然科学版), 2018,33(2):35-40, 81.
[31] 朱文跃,刘宗田. 基于事件本体的突发事件领域知识建模[J]. 计算机工程与应用, 2018,54(21):148-155.
[32] GURBUZ O, RABHI F, DEMIRORS O. Process ontology development using natural language processing:a multiple case study[J]. Business process management journal, 2019,25(6):1208-1227.
[33] REYES-ORTIZ J A. Criminal event ontology population and enrichment using patterns recognition from text[J]. International journal of pattern recognition and artificial intelligence, 2019,33(11):1940014.
[34] 王思丽,祝忠明,刘巍,等.基于深度学习的领域本体概念自动获取方法研究[J].情报理论与实践, 2020,43(3):145-152,144.
[35] MAO Q, LI X, PENG H, et al. Event prediction based on evolutionary event ontology knowledge[J]. Future generation computer systems, 2021,115:76-89.
文章导航

/