[1] CASCINI G, FANTECHI A, SPINICCI E. Natural language processing of patents and technical documentation[C]//International workshop on document analysis systems. Berlin:Springer, 2004:508-520.
[2] CHOI S, PARK H, KANG D, et al. An sao-based text mining approach to building a technology tree for technology planning[J]. Expert systems with applications, 2012, 39(13):11443-11455.
[3] WANG X, WANG Z, HUANG Y, et al. Identifying r&d partners through subject-action-object semantic analysis in a problem & solution pattern[J]. Technology analysis & strategic management, 2017, 29(10):1167-1180.
[4] TSOURIKOV V M, BATCHILO L S, SOVPEL I V. Document semantic analysis/selection with knowledge creativity capability utilizing subject-action-object (sao) structures:U.S. Patent 6,167,370[P]. 2000-12-26.
[5] 付芸,汪雪锋,李佳,等.基于SAO结构的创新解决方案遴选研究——以空气净化技术为例[J].图书情报工作,2019,63(6):75-84.
[6] 许海云,王振蒙,胡正银,等.利用专利文本分析识别技术主题的关键技术研究综述[J].情报理论与实践,2016,39(11):131-137.
[7] 胡正银,刘春江,隗玲,等,文奕.面向TRIZ的领域专利技术挖掘系统设计与实践[J].图书情报工作,2017,61(1):117-124.
[8] 杨超,朱东华,汪雪锋,等.专利技术主题分析:基于SAO结构的LDA主题模型方法[J].图书情报工作,2017,61(3):86-96.
[9] CHANG P L, WU C C, Leu H J. Using patent analyses to monitor the technological trends in an emerging field of technology:a case of carbon nanotube field emission display[J]. Scientometrics, 2010, 82(1):5-19.
[10] GUO J, WANG X, LI Q, et al. Subject-action-object-based morphology analysis for determining the direction of technological change[J]. Technological forecasting and social change, 2016, 105:27-40.
[11] LI X, WANG J J, YANG Z. Identifying emerging technologies based on subject-action-object[J]. Journal of intelligence, 2016, 35(3):80-84.
[12] 王晓宇,苗红,王芳.技术知识的跨领域应用及潜在技术方案的识别[J].图书情报工作,2016,60(23):87-96.
[13] 胡正银,方曙,张娴,等.个性化语义TRIZ构建研究[J].图书情报工作,2015,59(7):123-131.
[14] MANEK A S, SHENOY P D, MOHAN M C, et al. Aspect term extraction for sentiment analysis in large movie reviews using gini index feature selection method and SVM classifier[J]. World Wide Web,2017, 20(2):135-154.
[15] BACHHETY S, DHINGRA S, JAIN R, et al. Improved multinomial naïve bayes approach for sentiment analysis on social media[J]. International journal of information systems & management science, 2018, 1(1).
[16] RABINER L R. A tutorial on hidden Markov models and selected applications in speech recognition[J]. Proceedings of the IEEE, 1989, 77(2):257-286.
[17] BREIMAN L. Random forests[J]. Machine learning, 2001, 45(1):5-32.
[18] 高金勇,徐朝军,冯奕竸.基于迭代的TFIDF在短文本分类中的应用[J].情报理论与实践,2011,34(6):120-122.
[19] 范云杰,刘怀亮.基于维基百科的中文短文本分类研究[J].现代图书情报技术,2012(3):47-52.
[20] MINAEE S, KALCHBRENNER N, CAMBRIA E, et al. Deep learning based text classification:a comprehensive review[J]. arXiv preprint arXiv:2004.03705, 2020.
[21] YIN W, KANN K, YU M, et al. Comparative study of cnn and rnn for natural language processing[J]. arXiv preprint arXiv:1702.01923, 2017.
[22] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural computation, 1997, 9(8):1735-1780.
[23] OLAH C. Understanding lstm networks[EB/OL] [2015-8-27]. https://colah.github.io/posts/2015-08-Understanding-LSTMs/.
[24] CHO K, VAN MERRIÄNBOER B, GULCEHRE C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[J]. arXiv preprint arXiv:1406.1078, 2014.
[25] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in neural information processing systems. 2017:5998-6008.
[26] 邓三鸿,傅余洋子,王昊.基于LSTM模型的中文图书多标签分类研究[J].数据分析与知识发现,2017,1(7):52-60.
[27] 吕璐成,韩涛,周健,等.基于深度学习的中文专利自动分类方法研究[J].图书情报工作,2020,64(10):75-85.
[28] LEE J, DERNONCOURT F. Sequential short-text classification with recurrent and convolutional neural networks[J]. arXiv preprint arXiv:1603.03827, 2016.
[29] 秦成磊,章成志.基于层次注意力网络模型的学术文本结构功能识别[J].数据分析与知识发现,2020,4(11):26-42.
[30] 陶志勇,李小兵,刘影,等.基于双向长短时记忆网络的改进注意力短文本分类方法[J].数据分析与知识发现,2019,3(12):21-29.
[31] 余本功,朱梦迪.基于层级注意力多通道卷积双向GRU的问题分类研究[J].数据分析与知识发现,2020,4(8):50-62.
[32] DEVLIN J, CHANG M W, LEE K, et al. Bert:Pre-training of deep bidirectional transformers for language understanding[J]. arXiv preprint arXiv:1810.04805, 2018.
[33] SUN C, QIU X, XU Y, et al. How to fine-tune bert for text classification?[C]//China national conference on Chinese computational linguistics. Cham:Springer, 2019:194-206.
[34] LEE J S, HSIANG J. Patentbert:Patent classification with fine-tuning a pre-trained bert model[J]. arXiv preprint arXiv:1906.02124, 2019.
[35] LU X, NI B. BERT-CNN:A hierarchical patent classifier based on a pre-trained language model[J]. arXiv preprint arXiv:1911.06241, 2019.
[36] 刘欢,张智雄,王宇飞.BERT模型的主要优化改进方法研究综述[J/OL].数据分析与知识发现:1-17[2021-01-05]. https://doi.org/10.11925/infotech.2096-3467.2020.0965.
[37] LIU W, ZHOU P, ZHAO Z, et al. K-BERT:Enabling Language Representation with Knowledge Graph[J]. arXiv preprint arXiv:1909.07606, 2019.
[38] YU S, SU J, LUO D. Improving BERT-based text classification with auxiliary sentence and domain knowledge[J]. IEEE access, 2019, 7:176600-176612.
[39] ORKPHOL K, YANG W. Word sense disambiguation using cosine similarity collaborates with Word2vecand WordNet[J]. Future Internet, 2019, 11(5):114.
[40] MIKOLOV T, CHEN K, CORRADO G, et al. Efficient estimation of word representations in vector space[J]. arXiv preprint arXiv:1301.3781, 2013.
[41] 中国大百科全书总编辑委员会.中国大百科全书图书馆学·情报学·档案学[M].北京:中国大百科全书出版社, 2002.
[42] 丘东江. 新编图书馆学情报学辞典[M].北京:科学技术文献出版社, 2006.
[43] 白如江,张庆芝,孙一钢.科技文献知识基因表达及遗传与变异研究[J].图书情报工作,2020,64(4):78-87.
[44] 图书馆·情报与文献学名词审定委员会. 图书馆·情报与文献学名词2019[M].北京:科学出版社,2019.
[45] ASHKAN J, HAMED E, MIHAN H, et al. Improvement in automatic classification of Persian documents by means of support vector machine and representative vector[C]//International conference on innovative computing technology. Berlin:Springer, 2011:282-292.
[46] 杨敏,谷俊.基于SVM的中文书目自动分类及应用研究[J].图书情报工作,2012,56(9):114-119.
[47] 王东波,何琳,黄水清.基于支持向量机的先秦诸子典籍自动分类研究[J].图书情报工作,2017,61(12):71-76.
[48] WANG J H, LIU T W, LUO X, et al. An LSTM approach to short text sentiment classification with word embeddings[C]//Proceedings of the 30th conference on computational linguistics and speech processing (ROCLING 2018). Hsinchu:ACLCLP, 2018:214-223.