[Purpose/significance] During public health emergencies, online rumors have serious negative effects and disturb social order. This paper takes the rumors during the COVID-19 as an example to explore the factors that influence the rumor refutation effectiveness, and provide references for rumor refutation in the face of public health emergencies, so as to improve the rumor refutation effectiveness and avoid social risks.[Method/process] In order to explore the factors influencing rumor refutation effectiveness in public health emergencies, this paper adopted the grounded theory, used NVivo 12.0 software to code. In the end, 22 initial concepts, 12 categories and 6 main categories were obtained. On this basis, the interpreting structural model method and MATLAB were used to analyze the relationship between various influencing factors.[Result/conclusion] In this study, based on the coding results, the influential factors of rumor refutation effectiveness are summarized and integrated into three layers, namely subject, information and channel. According to these influential factors, the SIC model analysis framework of the influential factors of rumor refutation effectiveness is constructed to analyze the relationship between the main categories and rumor refutation effectiveness, and the hierarchical structure model of influencing factors of rumor refutation effectiveness is constructed.
[1] 张翼鹏,马敬东.突发公共卫生事件误导信息受众情感分析及传播特征研究[J].数据分析与知识发现,2020,4(12):45-54.
[2] 李晓静.突发公共卫生事件的信息来源、媒介信任与防控研究——以新冠肺炎疫情为例[J].图书与情报,2020(2):19-24.
[3] MEEL P, VISHWAKARMA D K. Fake news, rumor, information pollution in social media and web:a contemporary survey of state-of-the-arts, challenges and opportunities[J].Expert systems with applications,2019,153(1):112986.
[4] MAKHOUL J, KABAKIAN-KHASHOLIAN T, CHAIBAN L. Analyzing the social context of health information and misinformation during the COVID-19 pandemic:a case of emerging inequities in Lebanon[J].Global health promotion,2021,28(1):33-41.
[5] ZHANG Y, XU J. A dynamic competition and predation model for rumor and rumor-refutation[J].IEEE access,2020,9:9117-9129.
[6] 马宁,刘怡君.微博中谣言信息与辟谣信息综合影响力对比研究[J].情报资料工作,2020,41(3):41-48.
[7] 李宗敏,张琪,杜鑫雨.基于辟谣微博的互动及热门评论情感倾向的辟谣效果研究——以新冠疫情相关辟谣微博为例[J].情报杂志,2020,39(11):90-95,110.
[8] 吕途,陈昊,林欢,等.突发公共事件下网络谣言治理策略对谣言传播意愿的影响研究[J].情报杂志,2020,39(7):87-93.
[9] 曾润喜,朱利平.基于政治信息视角的网络谣言风险发生机理与治理研究[J].图书与情报,2016(4):1-7.
[10] YANG J, LEE S. Framing the MERS information crisis:an analysis on online news media's rumour coverage[J].Journal of contingencies and crisis management, 2020,28(4):386-398.
[11] 王晰巍,张柳,韦雅楠,等.社交网络舆情中意见领袖主题图谱构建及关系路径研究——基于网络谣言话题的分析[J].情报资料工作,2020,41(2):47-55.
[12] XIAO Y, CHEN D, WEI S, et al. Rumor propagation dynamic model based on evolutionary game and anti-rumor[J].Nonlinear dynamics,2019,95(1),523-539.
[13] 杨康,杨超,朱庆华.基于社交媒体的突发公共卫生事件公众信息需求与危机治理研究[J].情报理论与实践,2021,44(3):59-68.
[14] LI Z, ZHANG Q, DU X, et al. Social media rumor refutation effectiveness:Evaluation, modelling and enhancement[J].Information processing & management,2021,58(1),102420.
[15] 刘延海.网络谣言诱致社会风险的演化过程及影响因素——基于扎根理论的研究[J].情报杂志,2014,33(8):155-160,195.
[16] PAEK H J, HOVE T. Mediating and moderating roles of trust in government in effective risk rumor management:a test case of radiation-contaminated seafood in South Korea[J].Risk analysis,2019,39(12):2653-2667.
[17] 贾硕,张宁,沈洪洲.网络谣言传播与消解的研究进展[J].信息资源管理学报,2019,9(3):62-72.
[18] 张玉亮,贾传玲.突发事件网络谣言的蔓延机理及治理策略研究[J].情报理论与实践,2018,41(5):91-96.
[19] 屈楠伟,夏志杰,王诣铭.基于用户信息行为的社交媒体辟谣效果研究[J].情报科学,2021,39(1):111-119.
[20] 杜泽,张晓杰.循证治理视域下突发公共卫生事件的网络舆情治理研究[J].情报理论与实践,2020,43(5):17-23.
[21] 姜鑫,马海群,王德庄.基于质性文本分析视角的开放科学数据与个人数据保护的政策协同研究——以国外资助机构为例[J].情报理论与实践,2020,43(7):54-62.
[22] 张海.网络用户信息茧房形成机制的概念框架研究[J/OL].情报理论与实践:1-8[2021-06-28].http://kns.cnki.net/kcms/detail/11.1762.g3.20210208.0859.002.html.
[23] 马昕晨,冯缨.基于扎根理论的新媒体信息质量影响因素研究[J].情报理论与实践,2017,40(4):32-36,48.
[24] 贾若男,王晰巍.基于扎根理论的社交媒体用户转移行为特征研究[J].图书馆学研究,2018(17):26-33.
[25] 胡媛,艾文华,胡子祎,等.高校科研人员数据需求管理影响因素框架研究[J].中国图书馆学报,2019,45(4):104-121.
[26] 马捷,张世良,葛岩,等.新媒体环境下政务信息交互行为影响因素研究[J].情报资料工作,2020,41(1):24-31.
[27] 范杏彬,高齐圣. 解释结构模型在多响应问题建模中的应用[C]//《控制与决策》编辑委员会、中国航空学会自动控制分会、中国自动化学会应用专业委员会:《控制与决策》编辑部.2006中国控制与决策学术年会论文集.沈阳:东北大学出版社, 2006, 320-322.
[28] 王龙,李辉,田华伟.基于解释结构方程模型的公共安全政策效果第三方评估制约因素实证研究[J].管理评论,2018,30(11):266-274.
[29] 明均仁,操慧子.移动图书馆用户的不持续使用行为影响因素研究——以超星移动图书馆为例[J].情报理论与实践,2021,44(3):157-163.
[30] 陈娟,刘燕平,邓胜利.政务微博辟谣信息传播效果的影响因素研究[J].情报科学,2018,36(1):91-95,117.
[31] 张桂蓉,夏霆.突发公共事件网络谣言传播长尾效应的控制研究——以新型冠状病毒肺炎疫情为例[J].情报理论与实践,2021,44(3):69-75.
[32] 崔金栋,陈思远,李晨雨.基于大数据的多类型网络谣言类型平息方式实证研究——以"新冠肺炎疫情期间谣言"为例[J].情报理论与实践,2021,44(4):67-73.