[1] OLSSON O. Technological opportunity and growth[J]. Journal of economic growth, 2005, 10(1):31-53.
[2] LEE J, KIM C, SHIN J. Technology opportunity discovery to R&D planning:key technological performance analysis[EB/OL].[2021-01-06]. https://doi.org/10.1016/j.techfore.2017.03.011.
[3] SCHWARTZ P. Technological innovation opportunities[J]. Computers and people, 1974, 23(5):33.
[4] PORTER A L, DETAMPEL M J. Technology opportunities analysis[J]. Technological forecasting and social change, 1995, 49(3):237-255.
[5] 潘东华,徐珂珂. 基于共词分析的技术机会分析[J]. 科研管理, 2014, 35(4):12-19.
[6] SON C, SUH Y, JEON J, et al. Development of a GTM-based patent map for identifying patent vacuums[J]. Expert systems with applications, 2012, 39(3):2489-2500.
[7] WOO H G, YEOM J, LEE C. Screening early stage ideas in technology development processes:a text mining and k-nearest neighbours approach using patent information[J]. Technology analysis and strategic management, 2019, 31(5):532-545.
[8] CHANG S H. Technical trends of artificial intelligence in standard-essential patents[J]. Data technologies and applications, 2021, 55(1):97-117.
[9] LI S Y, ZHANG X, XU H Y, et al. Measuring strategic technological strength:patent portfolio model[EB/OL].[2021-01-06]. https://doi.org/10.1016/j.techfore.2020.120119.
[10] TANG Y, LOU X M, CHEN Z F, et al. A study on dynamic patterns of technology convergence with IPC co-occurrence-based analysis:the case of 3D printing[J]. Sustainability, 2020, 12(7):1-26.
[11] JI Y K, ZHU X Z, ZHAO T W, et al. Revealing technology innovation, competition and cooperation of self-driving vehicles from patent perspective[EB/OL].[2021-01-06]. https://doi.org/10.1109/ACCESS.2020.3042019.
[12] WANG M Y, FANG S C, CHANG Y H. Exploring technological opportunities by mining the gaps between science and technology:microalgal biofuels[EB/OL].[2021-01-16].https://doi.org/10.1016/j.techfore.2014.07.008.
[13] MUSYUNI P, AGGARWAL G, NAGPAL M, et al. A case study:analysis of patents on coronaviruses and covid-19 for technological assessment and future research[J]. Current pharmaceutical design, 2021, 27(3):423-439.
[14] FENG L J, NIU Y X, LIU Z F, et al. Discovering technology opportunity by keyword-based patent analysis:a hybrid approach of morphology analysis and usit[J]. Sustainability, 2020, 12(1):1-35.
[15] ZHOU X, HUANG L, ZHANG Y, et al. A hybrid approach to detecting technological recombination based on text mining and patent network analysis[J]. Scientometrics, 2019, 121(2):699-737.
[16] GERKEN J M, MOEHRLE M G. A new instrument for technology monitoring:novelty in patents measured by semantic patent analysis[J]. Scientometrics, 2012, 91(3):645-670.
[17] LEE S, YOON B, PARK Y. An approach to discovering new technology opportunities:keyword-based patent map approach[J]. Technovation, 2009, 29(6):481-497.
[18] CHOI J, HWANG Y S. Patent keyword network analysis for improving technology development efficiency[EB/OL].[2021-01-06]. https://doi.org/10.1016/j.techfore.2013.07.004.
[19] 吴菲菲,米兰,黄鲁成. 以技术标准为导向的企业研发方向识别与评估[J]. 科学学研究, 2018, 36(10):1837-1847.
[20] 许学国,桂美增.基于GTM逆向映射的技术创新机会识别——以新能源汽车为例[J].情报理论与实践,2021,44(6):146-153,198.
[21] 翟东升,刘鹤,张杰,等. 一种基于链路预测的技术机会挖掘方法[J]. 情报学报, 2016, 35(10):1090-1100.
[22] LIBEN D, KLEINBERG J. The link prediction problem for social networks[J]. Journal of the American Society for Information Science and technology, 2007, 58(7):1019-1031.
[23] LEE C, KANG B, SHIN J. Novelty focused patent mapping for technology opportunity analysis[EB/OL].[2021-01-06]. https://doi.org/10.1016/j.techfore.2014.05.010.
[24] LESKOVEC J, HUTTENLOCHER D, KLEINBERG J. Predicting positive and negative links in online social networks[C]//Proceedings of the 19th international conference on world wide web. New York:ACM Press, 2010:641-650.
[25] 黄璐,朱一鹤,张嶷. 基于加权网络链路预测的新兴技术主题识别研究[J]. 情报学报, 2019, 38(4):335-341.
[26] ZHOU M, WANG B, GUO S D, et al. Multi-objective prediction intervals for wind power forecast based on deep neural networks[EB/OL].[2021-01-06]. https://doi.org/10.1016/j.ins.2020.10.034.
[27] CHEN J, ZHANG J, XU X, et al. E-LSTM-D:a deep learning framework for dynamic network link prediction[J]. IEEE transactions on systems man cybernetics-systems, 2021, 51(6):3699-3712.
[28] RUI L, ZHU Y, GAO Z, et al. CLPM:a cooperative link prediction model for industrial internet of things using partitioned stacked denoising autoencoder[J]. IEEE transactions on industrial informatics, 2021, 17(5):3620-3629.
[29] YOON B, MAGEE C L. Exploring technology opportunities by visualizing patent information based on generative topographic mapping and link prediction[EB/OL].[2021-01-06]. https://doi.org/10.1016/j.techfore.2018.01.019.
[30] OH S, CHOI J, KO N, et al. Predicting product development directions for new product planning using patent classification-based link prediction[J]. Scientometrics, 2020, 125(3):1833-1876.
[31] 许学国,桂美增. 基于深度学习的技术预测方法——以机器人技术为例[J]. 情报杂志, 2020, 39(8):53-62.
[32] DHELIM S, NING H, AUNG N. Compath:user interest mining in heterogeneous signed social networks for internet of people[J]. IEEE Internet of things journal, 2021, 8(8):7024-7035.
[33] KIM M, PARK Y, YOON J. Generating patent development maps for technology monitoring using semantic patent-topic analysis[EB/OL].[2021-01-06]. https://doi.org/10.1016/j.cie.2016.06.006.
[34] FREY B J, DUECK D. Clustering by passing messages between data points[J]. Science, 2007, 315(5814):972-976.
[35] TAHERI S, BOUYER A. Community detection in social networks using affinity propagation with adaptive similarity matrix[J]. Big data, 2020, 8(3):189-202.
[36] GUAN R, SHI X, MARCHESE M, et al. Text clustering with seeds affinity propagation[J]. IEEE transactions on knowledge and data engineering, 2010, 23(4):627-637.
[37] 国显达,那日萨,高欢,等. 基于Gaussian LDA的在线评论主题挖掘研究[J]. 情报学报, 2020, 39(6):630-639.
[38] YANG Y, DORN C. Affinity propagation clustering of full-field, high-spatial-dimensional measurements for robust output-only modal identification:a proof-of-concept study[EB/OL].[2021-02-06]. https://doi.org/10.1016/j.jsv.2020.115473.
[39] 李勇敢. 技术领域维度下相对技术关联度研究——以德温特专利数据库共类分析为例[J]. 科技进步与对策, 2017, 34(7):146-153.
[40] LE Q, MIKOLOV T. Distributed representations of sentences and documents[C]//Proceedings of the 31st international conference on machine learning. New York:PMLR, 2014:1188-1196.
[41] FENG S. The proximity of ideas:an analysis of patent text using machine learning[J]. Plos one, 2020, 15(7):1-19.
[42] LU Y, XIONG X, ZHANG W, et al. Research on classification and similarity of patent citation based on deep learning[J]. Scientometrics, 2020, 123(2):813-837.
[43] KIM D, SEO D, CHO S, et al. Multi-co-training for document classification using various document representations:TF-IDF, LDA, and doc2vec[EB/OL].[2021-02-06]. https://doi.org/10.1016/j.ins.2018.10.006
[44] TRAPPEY A J C, CHEN P P J, TRAPPEY V C, et al. A machine learning approach for solar power technology review and patent evolution analysis[J]. Applied sciences-basel, 2019, 9(7):1-25.
[45] BISHOP C M, SVENSEN M, WILLIAMS C K I. GTM:the generative topographic mapping[J]. Neural computation, 1998, 10(1):215-234.
[46] 孙冰,徐晓菲,苏晓. 技术扩散主路径及核心企业的识别研究——以手机芯片专利引文网络为例[J]. 情报学报, 2019, 38(2):201-208.
[47] 柴庆凤,翟东升,蔡力伟,等. 基于专利网络链接模型的技术链接机会预测方法研究[J]. 情报理论与实践, 2020, 43(12):111-119.
[48] LEE C, KWON O, KIM M, et al. Early identification of emerging technologies:a machine learning approach using multiple patent indicators[EB/OL].[2021-01-06]. https://doi.org/10.1016/j.techfore.2017.10.002.
[49] SOHRABI M K, ROSHANI R. Frequent itemset mining using cellular learning automata[EB/OL].[2021-01-06]. https://doi.org/10.1016/j.chb.2016.11.036.
[50] ALI S H. Miner for oaccr:case of medical data analysis in knowledge discovery[C]//2012 6th international conference on sciences of electronics, technologies of information and telecommunications (setit). Sousse:IEEE, 2012:962-975.
[51] DA COSTA M, DOS SANTOS L, SCHAEFER J, et al. Industry 4.0 technologies basic network identification[J]. Scientometrics, 2019, 121(2):977-994.
[52] 贾军,魏洁云. 新兴产业核心技术早期识别方法与应用研究[J]. 科学学研究, 2018, 36(7):1206-1214.
[53] 吴菲菲,陈明,黄鲁成. 基于GTM的3D生物打印专利技术空白点识别[J]. 情报杂志, 2015, 34(3):58-64.
[54] 郭本海,陆文茜,王涵,等. 基于关键技术链的新能源汽车产业政策分解及政策效力测度[J]. 中国人口·资源与环境, 2019, 29(8):76-86.
[55] MARTINO J P. A review of selected recent advances in technological forecasting[J]. Technological forecasting and social change, 2003, 70(8):719-733.