情报研究

在线学习平台从众选择行为形成机理的扎根分析

  • 查先进 ,
  • 张坤 ,
  • 严亚兰
展开
  • 1. 武汉大学信息管理学院 武汉 430072;
    2. 武汉大学信息资源研究中心 武汉 430072;
    3. 武汉大学图书情报国家级实验教学示范中心 武汉 430072;
    4. 武汉科技大学恒大管理学院 武汉 430065
查先进,教授(珞珈特聘教授),博士,博士生导师,E-mail:xianjinzha@163.com;张坤,博士研究生;严亚兰,教授,博士,博士生导师。

收稿日期: 2021-07-27

  修回日期: 2021-11-08

  网络出版日期: 2022-02-11

基金资助

本文系国家自然科学基金项目“社会连接和认知负荷视角下网络用户从众信息行为研究”(项目编号:71874124)和国家自然科学基金项目“社会学习和心理授权视角下智能推荐用户信息行为影响规律研究”(项目编号:72174148)研究成果之一。

The Grounded Analysis of the Formation Mechanism of Herd Choice Behaviors on Online Learning Platforms

  • Zha Xianjin ,
  • Zhang Kun ,
  • Yan Yalan
Expand
  • 1. School of Information Management, Wuhan University, Wuhan 430072;
    2. Center for Studies of Information Resources, Wuhan University, Wuhan 430072;
    3. Laboratory Center for Library and Information Science, Wuhan University, Wuhan 430072;
    4. Evergrande School of Management, Wuhan University of Science and Technology, Wuhan 430065

Received date: 2021-07-27

  Revised date: 2021-11-08

  Online published: 2022-02-11

摘要

[目的/意义] 探究在线学习平台从众选择行为形成机理,旨在为在线学习平台建设和服务优化提供参考。[方法/过程] 从学生视角,利用扎根理论方法对访谈资料进行三级编码分析,理清范畴间的作用机制,构建在线学习平台从众选择行为形成机理模型。[结果/结论] 感知收益、用户需求、社会影响和信息偶遇直接影响在线学习平台从众选择行为的形成,而平台质量和平台声誉通过感知收益的中介作用间接影响在线学习平台从众选择行为的形成。在此基础上,从用户、情境和平台层面为在线学习平台的服务优化提出若干针对性建议。

本文引用格式

查先进 , 张坤 , 严亚兰 . 在线学习平台从众选择行为形成机理的扎根分析[J]. 图书情报工作, 2022 , 66(2) : 90 -98 . DOI: 10.13266/j.issn.0252-3116.2022.02.010

Abstract

[Purpose/significance] Exploring the formation mechanism of herd choice behaviors on online learning platforms aims to provide references for the optimization of construction and service of online learning platforms. [Method/process] Based on the perspective of students, the grounded theory was employed to make a three-level coding analysis of the interview data, clarify the impacting mechanism among categories, and develop the formation mechanism model of herd choice behaviors on online learning platforms. [Result/conclusion] Perceived benefits, user demands, social impacts and information encounters have direct impacts on the formation of herd choice behaviors on online learning platforms, while platform quality and platform reputation indirectly affect the formation of herd choice behaviors on online learning platforms through the mediating effect of perceived benefits. Based on this, some targeted suggestions are provided for the service optimization of online learning platforms from the levels of users, situations and platforms.

参考文献

[1] 中国互联网信息中心. 第47次《中国互联网络发展状况统计报告》[EB/OL].[2021-08-01]. http://www.cnnic.net.cn/hlwfzyj/hlwxzbg/hlwtjbg/202102/P020210203334633480104.pdf.
[2] 刘刚,李佳,梁晗. "互联网+"时代高校教学创新的思考与对策[J]. 中国高教研究, 2017, 282(2):93-98.
[3] 汪基德,刘革. 教育信息化促进基础教育均衡发展[J]. 教育研究, 2017, 38(3):110-112.
[4] 李艳,陈新亚,陈逸煊,等. 疫情期间大学生在线学习调查与启示——以浙江大学竺可桢学院为例[J]. 开放教育研究, 2020, 26(5):60-70.
[5] 张坤,谢笑. 数描客体在数据分析中的应用研究[J]. 情报资料工作, 2020, 41(4):93-103.
[6] 曹培杰. 智慧教育:人工智能时代的教育变革[J]. 教育研究, 2018, 39(8):121-128.
[7] BANERJEE A V. A simple model of herd behavior[J]. The quarterly journal of economics, 1992, 107(3):797-817.
[8] 刘江,朱庆华,吴克文,等. 网购用户从众行为影响因素实证研究[J]. 图书情报工作, 2012, 56(12):138-143.
[9] WANG W, GUO L, SUN R. Rational herd behavior in online learning:insights from MOOC[J]. Computers in human behavior, 2019, 92(3):660-669.
[10] 覃红霞,李政,周建华. 不同学科在线教学满意度及持续使用意愿——基于技术接受模型(TAM)的实证分析[J]. 教育研究, 2020, 41(11):91-103.
[11] 荆永君,李昕,姜雪. 在线学习行为意向影响因素分析及后疫情时代的教育启示[J]. 中国电化教育, 2021, 418(6):31-38.
[12] TARHINI A, HONE K, LIU X. User acceptance towards web-based learning systems:investigating the role of social, organizational and individual factors in European higher education[J]. Procedia computer science, 2013, 17(5):189-197.
[13] GAO S, YANG Y. An empirical study on users' adoption of MOOCs from the perspective of the institutional theory[J]. International journal of networking and virtual organisations, 2016, 16(4):377-388.
[14] RUSLI R, HASHIM H U, HASHIM H, et al. Learners' awareness towards the use of MOOCs in teaching and learning[J]. Creative education, 2019, 10(12):3012-3019.
[15] 吴继兰,尚珊珊. MOOCs平台学习使用影响因素研究——基于隐性和显性知识学习视角[J]. 管理科学学报, 2019, 22(3):21-39.
[16] 王建亚,牛晓蓉,万莉. 基于元分析的在线学习用户使用行为研究[J]. 现代情报, 2020, 40(1):58-68.
[17] 朱红灿,段港平. 在线评论对在线学习平台用户使用意愿的影响[J]. 开放教育研究, 2021, 27(1):113-120.
[18] 张敏,祝安,张芳. 在线教育平台用户持续使用行为研究的影响因素[J]. 图书馆论坛, 2020, 40(5):82-91.
[19] WANG L, LEW S, LAU S, et al. Usability factors predicting continuance of intention to use cloud e-learning application[J]. Heliyon, 2019, 5(6):e1788.
[20] 陈美玲,白兴瑞,林艳. 移动学习用户持续使用行为影响因素实证研究[J]. 中国远程教育, 2014, 478(12):41-47.
[21] BANSAL H S. "Migrating" to new service providers:toward a unifying framework of consumers' switching behaviors[J]. Journal of the academy of marketing science, 2005, 33(1):96-115.
[22] LIAO Y, HUANG Y, HUANG S, et al. Exploring the switching intention of learners on social network-based learning platforms:a perspective of the push-pull-mooring model[J]. EURASIA journal of mathematics, science and technology education, 2019, 15(9):m1747.
[23] 方佳明,史志慧,刘璐. 基于5G技术的在线教育平台学习者迁移行为影响机制[J]. 现代远程教育研究, 2019, 31(6):22-31.
[24] YANG D, PIERGALLINI M, HOWLEY I, et al. Forum thread recommendation for massive open online courses[C]//Educational data mining conference. Foster City:ACM Press, 2014:257-260.
[25] 陈向明. 扎根理论的思路和方法[J]. 教育研究与实验, 1999(4):58-63.
[26] STRAUSS A L. Qualitative analysis for social scientists[M]. Cambridge:Cambridge University Press, 1987:5.
[27] 胡蓉,赵宇翔,朱庆华. 移动互联环境下用户跨屏行为整合分析框架——基于扎根理论的探索[J]. 中国图书馆学报, 2017, 43(6):113-129.
[28] ZHANG S, LI Y, RUAN W, et al. Would you enjoy virtual travel? the characteristics and causes of virtual tourists' sentiment under the influence of the COVID-19 pandemic[J]. Tourism management, 2022, 88(1):104429.
[29] CHEN S, YUAN Y, ROBERT LUO X, et al. Discovering group-based transnational cyber fraud actives:a polymethodological view[J]. Computers & security, 2021, 104(5):102217.
[30] 牛晓宏,朱洪涛. 开放获取S计划10项原则的问题及对策分析[J]. 图书情报工作, 2021, 65(10):3-12.
[31] BRANDÃO C, MIGUEZ J. Using NVivo to assess a program of goal-corrected empathic attunement skills:a case study in the context of higher education[J]. Universal access in the information society, 2017, 16(4):863-876.
[32] GUO J X. Measuring information system project success through a software-assisted qualitative content analysis[J]. Information technology and libraries, 2019, 38(1):53-70.
[33] PENG K, NISBETT R E. Culture, dialectics, and reasoning about contradiction[J]. American psychologist, 1999, 54(9):741-754.
[34] 孙晓娥. 扎根理论在深度访谈研究中的实例探析[J]. 西安交通大学学报(社会科学版), 2011, 31(6):87-92.
[35] PARK D, KIM S. The effects of consumer knowledge on message processing of electronic word-of-mouth via online consumer reviews[J]. Electronic commerce research and applications, 2008, 7(4):399-410.
[36] BAGOZZI R P, DHOLAKIA U M. Intentional social action in virtual communities[J]. Journal of interactive marketing, 2002, 16(2):2-21.
[37] ERDELEZ S. Investigation of information encountering in the controlled research environment[J]. Information processing & management, 2004, 40(6):1013-1025.
[38] WHYTE W H. The Web of word of mouth[J]. Fortune, 1954, 50(5):140-143.
[39] SCHMITT P, SKIERA B, VAN DEN BULTE C. Referral programs and customer value[J]. Journal of marketing, 2011, 75(1):46-59.
[40] SUSSMAN S W, SIEGAL W S. Informational influence in organizations:an integrated approach to knowledge adoption[J]. Information systems research, 2003, 14(1):47-65.
[41] 赵英,杨阁,罗萱. 大学生对MOOC接受与使用行为的调查研究[J]. 中国远程教育(综合版), 2015(8):37-44.
[42] 曾建勋. 开创用户需求的信息组织[J]. 数字图书馆论坛, 2019(7):1.
[43] CULNAN M J, BIES R J. Consumer privacy:balancing economic and justice considerations[J]. Journal of social issues, 2003, 59(2):323-342.
[44] 查先进,李力,严亚兰,等. 数字图书馆环境下信息有用性和信息获取影响因素研究——信息获取自我效能的调节效果[J]. 情报学报, 2017, 36(7):669-681.
[45] 王晰巍,刘伟利,贾沣琦,等. 网络直播APP使用行为影响因素模型及实证研究[J]. 图书情报工作, 2020, 64(5):22-31.
[46] FRANCIS J J, JOHNSTON M, ROBERTSON C, et al. What is an adequate sample size? operationalising data saturation for theory-based interview studies[J]. Psychology & health, 2010, 25(10):1229-1245.
[47] 王贇芝,王雪,查先进. 弹幕视频网站用户从众信息评论行为驱动因素探索[J]. 信息资源管理学报, 2020, 10(4):60-69.
[48] CHANG C. The different impact of fluency and disfluency on online group-buying conforming behavior[J]. Computers in human behavior, 2018, 85(8):15-22.
[49] WIJENAYAKE S, BERKEL N V, KOSTAKOS V, et al. Impact of contextual and personal determinants on online social conformity[J]. Computers in human behavior, 2020, 108(7):106302.
[50] ROSANDER M, ERIKSSON O. Conformity on the Internet-the role of task difficulty and gender differences[J]. Computers in human behavior, 2012, 28(5):1587-1595.
文章导航

/