情报研究

大数据专业培养内容的主题分析及对图情档学科的启示

  • 杨杰 ,
  • 赵星
展开
  • 1. 华东师范大学经济与管理学部信息管理系 上海 200062;
    2. 华东师范大学学术评价与促进研究中心 上海 200062
杨杰,本科生,E-mail:alexjieyang@outlook.com;赵星,经济与管理学部副主任,学术评价与促进研究中心主任,教授。

收稿日期: 2021-06-01

  修回日期: 2021-09-16

  网络出版日期: 2022-02-11

基金资助

本文系国家自然科学基金面上项目“跨维度引文分析方法研究”(项目编号:71874056)研究成果之一。

Theme Analysis of the Training Contents of Big Data Subjects and the Enlightenment to the Library and Information Science

  • Yang Jie ,
  • Zhao Xing
Expand
  • 1. Department of Information Management, East China Normal University, Shanghai 200062;
    2. Institute for Academic Evaluation and Development, Shanghai 200062

Received date: 2021-06-01

  Revised date: 2021-09-16

  Online published: 2022-02-11

摘要

[目的/意义] 在大数据浪潮和“新文科”背景下,中国图情档学科的人才培养范式亟需改革。与此同时,大数据相关专业的建设方兴未艾,对于图情档学科的人才培养新范式建设具有借鉴意义。[方法/过程] 采用一种时序主题网络模型及计算方法;通过搜集、处理、统计、分析259所高等院校的大数据专业培养方案文本,在时间维度上进行主题挖掘,总结归纳数据科学课程的层次;分析图情档学科主干知识与大数据专业的联系,并给出适合图情档学科的数据科学课程建议。[结果/结论] 结果表明,所采用的时序主题网络模型方法能够较好地契合大数据专业的人才培养范式发展分析,可以成为研究学科主题的一种方法。此外,还给出面向图情档学科的数据科学类课程建议,可供图情档学科的人才培养参考。

本文引用格式

杨杰 , 赵星 . 大数据专业培养内容的主题分析及对图情档学科的启示[J]. 图书情报工作, 2022 , 66(2) : 109 -116 . DOI: 10.13266/j.issn.0252-3116.2022.02.012

Abstract

[Purpose/significance] Under the background of the big data tide and the new liberal arts, there is an urgent need to reform and innovate the talent training mode of library and information science in China. The construction of the big data subjects is in the ascendant, which has a strong reference significance for the construction of a new paradigm of talent cultivation in library and information science. [Method/process] This paper innovatively proposed a new sequential topic network model and the calculation method. By collecting, processing, counting and analyzing the talent cultivation policies of the big data subjects in 259 universities, this paper conducted topic mining in the time dimension and summarized the levels of data science courses. Additionally, this paper analyzed the relevance between the subjects of the big data and the main knowledge of library and information science, and put forward suggestions for data science courses suitable for library and information science. [Result/conclusion] The sequential topic network model can better fit the analysis of talent cultivation paradigm development in the big data subjects, and it may also be a way to research the topic of a subject. Finally, this paper puts forward some suggestions for the courses of data science which is oriented to library and information science, and there is certain reference value for the development of talent cultivation in library and information science.

参考文献

[1] 叶鹰,马费成.数据科学兴起及其与信息科学的关联[J].情报学报,2015,34(6):575-580.
[2] 孙建军,李阳,裴雷."数智"赋能时代图情档学科变革之思考[J].图书情报知识,2020(3):22-27.
[3] 赵星,乔利利,叶鹰.面向数据智能和知识发现的图书情报学跨界拓展——数据-学术-创造整合论[J].中国图书馆学报,2020,46(6):16-25.
[4] 叶鹰.试论图书情报学的主干知识及有效方法:兼论双证法和模本法之效用[J].中国图书馆学报, 2021,47(3):58-66.
[5] 闫慧,韩蕾倩,吴萌,等.图书馆学、情报学与档案学2029年发展前景研究[J].图书与情报,2019(6):2-17,153.
[6] 初景利."新文科"呼唤图情档成为"硬"学科[J].图书与情报,2020(6):1-3.
[7] 马费成,李志元.新文科背景下我国图书情报学科的发展前景[J].中国图书馆学报,2020,46(6):4-15.
[8] 张久珍.图情档学科建设需要与新时代发展接轨[J].图书与情报,2020(6):17-18.
[9] 周文杰.从多元异构走向融合归一——图情档新文科建设的趋向评析[J].情报资料工作, 2021,42(2):14-21.
[10] 陈沫,李广建,陈聪聪.情报学取向的"数据科学与大数据技术"专业人才培养[J].图书情报工作,2019,63(12):5-11.
[11] 陶俊,何晓东.面向图书情报的数据科学专业课程结构比较研究[J].图书馆学研究,2019(6):10-16.
[12] 赵星,俞晓婷,万玲玉.新文科背景下大数据管理与应用专业培养特征的内容分析[J].图书与情报,2020(6):26-34,92.
[13] 黎海波,谢健民.信管专业在新文科背景下的数据科学课程群建设研究[J].情报科学,2020,38(8):128-133.
[14] 闫慧,韩艳芳,张钰浩,等.图书馆信息学与新文科交叉领域的关系预测研究[J].情报资料工作,2021,42(1):21-27.
[15] DEERWESTER S C, DUMAIS S T, LANDAUER T K, et al. Indexing by latent semantic analysis[J].Journal of the American Society for Information Science, 1990, 41(6):391-407.
[16] HOFMANN T. Probabilistic latent semantic indexing[C]//Proceedings of the 22nd annual international SIGIR conference. New York:ACM Press, 1999:50-57.
[17] 廖君华,孙克迎,钟丽霞.一种基于时序主题模型的网络热点话题演化分析系统[J].图书情报工作,2013,57(9):96-102,118.
[18] BRUNS A. How long is a tweet? Mapping dynamic conversation networks on Twitter using Gawk and Gephi[J]. Information, communication & society, 2012, 15(9):1323-1351.
[19] WESTGATE M J, BARTON P S, PIERSON J C, et al. Text analysis tools for identification of emerging topics and research gaps in conservation science[J]. Conservation biology, 2015, 29(6):1606-1614.
[20] ZHANG Z F, LI Q D. QuestionHolic:hot topic discovery and trend analysis in community question answering systems[J]. Expert systems with applications, 2011, 38(6):6848-6855.
[21] ZHENG Y, MENG Z P, XU C. A short-text oriented clustering method for hot topics extraction[J]. International journal of software engineering and knowledge engineering, 2015, 25(3):453-471.
[22] JACOMY M, VENTURINI T, HEYMANN S, et al. ForceAtlas2, a continuous graph layout algorithm for handy network visualization designed for the Gephi software[EB/OL].[2021-12-09]. https://www.ncbi.nlm.nih.gov/sites/ppmc/articles/PMC4051631/.
[23] RANGANATHAN S R. The five laws of library science[M]. 2nd ed. Madras:The Madras Library Association, 1957.
[24] 柯平.新图情档——新文科建设中的图书情报与档案管理一级学科发展[J].情报资料工作,2021,42(1):15-20.
文章导航

/