理论研究

中国计算档案学发展的SWOT分析与策略研究

  • 赵跃 ,
  • 马晓玥 ,
  • 张佳欣
展开
  • 1. 四川大学公共管理学院 成都 610065;
    2. 中国人民大学信息资源管理学院 北京 100872
赵跃,副研究员,博士,E-mail:zhaoyuexxe@scu.edu.cn;马晓玥,硕士研究生;张佳欣,硕士研究生。

收稿日期: 2021-07-11

  修回日期: 2021-11-25

  网络出版日期: 2022-03-01

基金资助

本文系国家社会科学基金项目"面向‘三化融合’的非遗档案资源建设多元协同模式研究"(项目编号:20CTQ034)研究成果之一。

SWOT Analysis and Strategy Research on the Development of Computational Archival Science in China

  • Zhao Yue ,
  • Ma Xiaoyue ,
  • Zhang Jiaxin
Expand
  • 1. School of Public Administration, Sichuan University, Chengdu 610065;
    2. School of Information Resource Management, Renmin University of China, Beijing 100872

Received date: 2021-07-11

  Revised date: 2021-11-25

  Online published: 2022-03-01

摘要

[目的/意义] 回顾计算档案学发展现状,探索计算档案学在中国的发展策略,为新文科建设背景下中国计算档案学的发展提供参考。[方法/过程] 基于文献研究梳理计算档案学的发展现状,运用SWOT分析法剖析计算档案学在国内发展的机会、威胁、优势、劣势等内外部环境要素,并通过内外要素交叉匹配形成不同发展策略。[结果/结论] 研究发现,计算档案学的发展在国际上得到持续关注,且围绕基础理论、教育研究、档案处理、档案分析、档案化处理等方面初步确立了理论研究与实践探索的方向,但总体上,计算档案学的发展尚处于初步探索阶段。中国推进计算档案学需要注重:依托交叉学科的建设机遇,打造超学科研究平台;瞄准领域信息化战略需求,形成规模化研究方向;厘清与相关学科的边界,突出计算档案学的特色;发挥超学科的研究优势,规避数据安全隐私风险;抓住复合型人才培养契机,整合多方资源共建教学平台;围绕实践领域的核心问题,探索可操作的技术解决方案;加强制度设计与技术攻坚,做好档案安全风险评估与管控;加大基础研究,明晰计算档案学的理论、方法和技术体系。

本文引用格式

赵跃 , 马晓玥 , 张佳欣 . 中国计算档案学发展的SWOT分析与策略研究[J]. 图书情报工作, 2022 , 66(4) : 56 -66 . DOI: 10.13266/j.issn.0252-3116.2022.04.006

Abstract

[Purpose/significance] This paper reviews the current situation of the development of computational archival science (CAS), explores the development strategies of CAS in China, and provides a reference for the development of CAS in China under the background of the construction of new liberal arts.[Method/process] Based on literature research, this paper sorted out the current development situation of CAS, and analyzed the internal and external environmental factors such as opportunities, threats, advantages, and disadvantages of the development of CAS in China by SWOT analysis method, and formed different development strategies through the cross matching of internal and external factors.[Result/conclusion] It is found that the development of CAS has received sustained attention internationally and has initially established the direction of theoretical research and practical exploration around basic theory, educational research, archives processing, archives analysis, and archival processing, but in general, the development of CAS is still in the preliminary exploration stage. This paper proposes that, in order to promote CAS in China, we should pay attention to the following aspects:relying on the opportunities of interdisciplinary construction to build a platform for transdisciplinary research; aiming at the strategic needs of field informatization, and forming a large-scale research direction; clarifying the boundaries with related disciplines, and highlighting the characteristics of CAS; taking advantages of transdisciplinary research to avoid data security privacy risks; seizing the opportunities of cultivating interdisciplinary talents, and integrating multiple resources to build a teaching practice platform; exploring operable technical solutions around the core problems in the field of practice; strengthening institutional design and technical breakthroughs, and doing well in archives security risk assessment and control; and increasing basic research, and clarifying the theories, methods and technical systems of CAS.

参考文献

[1] CAS WORKSHOP. IEEE big data 2016:CAS #1[EB/OL].[2021-01-20]. https://ai-collaboratory.net/cas/cas-workshops/ieee-big-data-2016-1st-cas-workshop/.
[2] 傅天珍,郑江平.计算档案学的兴起、探索与启示[J]. 档案学通讯, 2019(4):28-33.
[3] 周文泓,代林序,贺谭涛,等.计算档案学的内涵解析与展望[J].档案学研究,2021(1):49-57.
[4] 陶玉芳.计算档案学的研究现状及未来展望[J].浙江档案,2021(2):53-56.
[5] 刘越男,杨建梁,何思源,等.计算档案学:档案学科的新发展[J].图书情报知识,2021,38(3):4-13.
[6] 于英香,刘茜.论计算档案学的出场逻辑[J].档案学通讯,2021(5):22-31.
[7] 赵跃,张佳欣.计算档案学在中国的发展前景探析——基于中国图情档界的计算档案学认知调查[J].档案学通讯,2021(5):32-39.
[8] UMD ISCHOOL. Research centers & labs[EB/OL].[2021-11-24].https://www.ischool.umd.edu/research/centers-and-labs.
[9] UMD ISCHOOL. Directory of richard marciano[EB/OL].[2021-11-24].https://www.ischool.umd.edu/about/directory/richard-marciano.
[10] COX R, SHAH S, FREDERICK W, et al. A case study in creating transparency in using cultural big data:the legacy of slavery project[C]//2018 IEEE international conference on big data. Piscataway:IEEE, 2018:2689-2695.
[11] UNDERWOOD W, MARCIANO R, LIAB S, et al. Computational curation of a digitized record series of WWII Japanese-American internment[C]//2017 IEEE international conference on big data. Piscataway:IEEE, 2017:2309-2313.
[12] MARCIANO R, LEE M, UNDERWOOD W, et al. Digital curation of a World War II Japanese-American incarceration camp collection:implications for sociotechnical archival systems[C]//2018 IEEE international conference on big data. Piscataway:IEEE, 2018:1-4.
[13] BATISTA D, WEINGAERTNER T.ArchContract:using smart contracts for disposition[C]//2019 IEEE international conference on big data. Piscataway:IEEE, 2019:3060-3065.
[14] LEMIEUX V. A typology of blockchain recordkeeping solutions and some reflections on their implications for the future of archival preservation[EB/OL].[2021-09-30]. https://dcicblog.umd.edu/cas/wpcontent/uploads/sites/13/2017/06/Lemieux.pdf.
[15] PAYNE N. Auto-categorization & future access to digital archives[EB/OL].[2021-04-13]. https://dcicblog.umd.edu/cas/wp-content/uploads/sites/13/2017/06/Payne.pdf.
[16] PAYNE N. An intelligent class:the development off a novel context capturing framework for the functional classification of records[EB/OL].[2021-04-13]. https://dcicblog.umd.edu/cas/wpcontent/uploads/sites/13/2019/11/Payne.pdf.
[17] KING'S COLLEGE LONDON. About the department of digital humanities[EB/OL].[2021-11-24].https://www.kcl.ac.uk/ddh/about/about.
[18] BRYANT M. GraphQL for archival metadata:an overview of the EHRI GraphQL API[EB/OL].[2021-04-13].http://dcicblog.umd.edu/cas/wpcontent/uploads/sites/13/2017/06/Bryant.pdf.
[19] SOBIGDATA. European research infrastructure for big data and social mining[EB/OL].[2021-11-24].http://www.sobigdata.eu/index.
[20] NOAH D. Computational archival science international network to be launched[EB/OL].[2021-11-24].https://ischool.umd.edu/news/computational-archival-science-international-network-be-launched.
[21] MARCIANO R, LEMIEUX V, HEDGES M, et al. Archival records and training in the age of big data[M]//PERCELL J, SARIN L C, JAEGER P T, et al. Re-envisioning the MLS:perspectives on the future of library and information science education, Bingley:Emerald, 2018:179-199.
[22] PAYNE N. Stirring the cauldron:redefining computational archival science (CAS) for the big data domain[C]//2018 IEEE international conference on big data. Piscataway:IEEE, 2018:2743-2752.
[23] LEE M, ZHANG Y, CHEN S, et al. Heuristics for assessing computational archival science (CAS) research:the case of the human face of big data project[C]//2017 IEEE international conference on big data. Piscataway:IEEE, 2017:2262-2270.
[24] STANCIC H. Computational archival science[EB/OL].[2021-09-30]. http://bib.irb.hr/datoteka/994072.Stancic_H._Computational_Archival_Science.pdf.
[25] THIBODEAU K. Computational archival practice:towards a theory for archival engineering[EB/OL].[2021-04-12]. https//dcicblog.umd.edu/cas/wpcontent/uploads/sites/13/2018/12/3.Thibodeau.pdf.
[26] STANCIC H, RAJH A, JAMIC M. Impact of ICT on archival practice from the 2000s onwards and the necessary changes of archival science curricula[C]//Proceedings of the 40th Jubilee international convention on information and communication technology, Electronics and microelectronics MIPRO 2017. BiljanoviÄ:Petar, 2017:812-817.
[27] WEINTROP D, BEHESHTI E, HORN M, et al. Defining computational thinking for mathematics and science classrooms[J]. Journal of science education and technology, 2015, 25(1):127-147.
[28] UNDERWOOD W, WEINTROP D, KURTZ M, et al. Introducing computational thinking into archival science education[C]//2018 IEEE international conference on big data. Piscataway:IEEE, 2018:2761-2765.
[29] UNDERWOOD W, MARCIANO R. Computational thinking in archival science research and education[C]//2019 IEEE international conference on big data. Piscataway:IEEE, 2019:3146-3152.
[30] MARCIANO R, JANSEN G, UNDERWOOD W. Developing a framework to enable collaboration in computational archival science education[EB/OL].[2021-04-13]. https://www2.archivists.org/sites/all/files/Marciano,%20Richard.pdf.
[31] DUGENIE P, FREIRE N, BROEDER D. Building new knowledge from distributed scientific corpus:HERBADROP & EUROPEANA:two concrete case studies for exploring big archival data[C]//IEEE international conference on big data. Piscataway:IEEE, 2017:2231-2239.
[32] SHALLCROSS M. Appraising digital archives with archivematica[EB/OL].[2021-04-13]. https://dcicblog.umd.edu/cas/wp-content/uploads/sites/13/2016/05/9.pdf.
[33] HUTCHINSON T. Protecting privacy in the archives:preliminary explorations of topic modeling for born-digital collections[EB/OL].[2021-04-11].https://dcicblog.umd.edu/cas/wp-content/uploads/sites/13/2017/06/Hutchinson.pdf.
[34] HUTCHINSON T. Protecting privacy in the archives:supervised machine learning and born-digital records[EB/OL].[2021-04-13].http://dcicblog.umd.edu/cas/wp-content/uploads/sites/13/2018/12/5.Hutchinson.pdf.
[35] BRYANT M. In-place synchronisation of hierarchical archival descriptions[EB/OL].[2021-04-13].https://dcicblog.umd.edu/cas/wp-content/uploads/sites/13/2018/12/8.Bryant.pdf.
[36] THOMAS W R. Petabytes in practice:working with collections as data at Scale[J].Data and information management, 2019;3(1):18-25.
[37] BLANKE T. Identifying epochs in text archives[EB/OL].[2021-04-13]. https://dcicblog.umd.edu/cas/wp-content/uploads/sites/13/2017/06/Blanke.pdf.
[38] O'SHEA E, KHAN R, BREATHNACH C, et al. Towards automatic data cleansing and classification of valid historical data an incremental approach based on MDD[C]//IEEE international conference on big data. Piscataway:IEEE, 2020:1914-1923.
[39] YIN Z, FAN L, YU H, et al. Using a three-step social media similarity (TSMS) mapping method to analyze controversial speech relating to COVID-19 in twitter collections[C]//IEEE international conference on big data. Piscataway:IEEE, 2020:1949-1953.
[40] FAN L, YIN Z,YU H, et al. Using data-driven analytics to enhance archival processing of the COVID-19 hate speech twitter archive (CHSTA)[EB/OL].[2021-04-13]. https://www.researchgate.net/publication/349071485_Using_machine_learning_to_predict_concrete's_strength_Learning_from_small_datasets.
[41] WIGHAM. Jupyter notebooks for generous archive interfaces[EB/OL].[2021-04-13].https://dcicblog.umd.edu/cas/wp-content/uploads/sites/13/2018/12/13.Wigham.pdf.
[42] GOODMANN E, Matienzo M A, Vancour S, et al. Building the national radio recordings database:a big data approach to documenting audio heritage[C]//2019 IEEE international conference on big data. Piscataway:IEEE, 2019:3080-3086.
[43] KIRALY P. Measuring completeness as metadata quality metric in europeana[EB/OL].[2021-09-13].https://dcicblog.umd.edu/cas/wp-content/uploads/sites/13/2018/12/7.Kiraly.pdf.
[44] XU W, HHUANG R, ESTEVA M, et al. Content-based comparison for collections identification[C]//IEEE international conference on big data. Piscataway:IEEE, 2016:3283-3289.
[45] MISKA T, CARDOSO J, BORBINHA J. Framing the scope of the common data model for machine-actionable data management plans[C]//2018 IEEE international conference on big data. IEEE, 2018:2733-2742.
[46] HAMOUDA H, BUSHEY J, LEMIEUX V, et al. Extending the scope of computational archival science:a case study on leveraging archival and engineering approaches to develop a framework to detect and prevent "fake video"[C]//2019 IEEE international conference on big data. Piscataway:IEEE, 2019:3087-3097.
[47] 樊丽明."新文科":时代需求与建设重点[J].中国大学教学,2020(5):4-8.
[48] 唐衍军,蒋翠珍.跨界融合:新时代新文科人才培养的新进路[J].当代教育科学,2020(2):71-74.
[49] 金波,杨鹏.大数据时代档案数据安全治理策略探析[J].情报科学,2020,38(9):30-35.
[50] 赵跃,孙晶琼,段先娥.档案化:档案科学介入数据资源管理的理性思考[J].档案学研究,2020(5):83-91.
[51] CAS WORKSHOP. Computational archival science[EB/OL].[2021-10-21].https://dcicblog.umd.edu/cas/4-cas-cyberinfrastructure/.
文章导航

/