[目的/意义] 基于关注和评论两种类型的交互网络及它们的组合网络,研究开放式创新平台用户交互对隐性社区的影响。[方法/过程] 收集LEGO IDEAS平台中半年的用户交互数据,运用拓扑分析、中心性分析、社区分析,借助Gephi软件分别针对关注、评论和组合关系构建3期网络关系图并进行演化分析。[结果/结论] 3种交互网络都具有无标度网络特性,少数用户涉及大量的交互。组合网络更接近开放式创新平台的真实网络结构。“评论”对隐性社区的形成及创新参与更重要。随着时间的增长,隐性社区节点数和连接数呈现递增趋势,新的节点更倾向于与那些具有较高连接度的中心节点相连接,信息传播效率越来越高。组合网隐性社区中,基于“评论”关系的子群随着时间推移更新迭代较快,而基于“关注”关系的子群相对稳定且持久。
[Purpose/significance] From interactive networks and their combined networks based on the two types of attention and comments, this paper investigates the influence of user interaction on implicit communities in open innovation platforms. [Method/process] This study collected the half-year user interaction data in the LEGO IDEAS platform, used topology analysis, centrality analysis and community analysis, and then used Gephi to construct three-phase network relationship diagrams and analyze the evolution for the concerns, comments and combination relationships. [Result/conclusion] This paper demonstrates that the three types of interactive networks all have the scale-free network characteristics, where a small number of users are involved in a large number of interactions. The combined network is closer to the real network structure of the open innovation platform. Comments are more important for the formation of implicit communities and innovation participation. With the growth of time, the number of nodes and connections in implicit communities shows an increasing trend. New nodes tend to be connected with hub nodes with higher connectivity, and the information transmission efficiency is getting higher and higher. In the implicit community of the combined network, the subgroups based on comment relationships update and iterate faster over time, while the subgroups based on follow relationships are relatively stable and lasting.
[1] CHAU M, XU J. Business intelligence in blogs: understanding consumer interactions and communities[J]. MIS quarterly. 2012, 36(4): 1189-1216.
[2] 逯万辉,谭宗颖. 基于显性-隐性二元关系的学术社区发现方法研究[J]. 情报科学, 2018, 36(1): 130-134.
[3] 王莉,程学旗. 在线社会网络的动态社区发现及演化[J]. 计算机学报, 2015, 38(2): 219-237.
[4] 吴江. 社会网络的动态分析与仿真实验——理论与应用[M]. 武汉: 武汉大学出版社, 2012.
[5] 罗家德. 社会网分析讲义[M]. 北京: 社会科学文献出版社, 2010.
[6] TANG L, LIU H, ZHANG J. Identifying evolving groups in dynamic multi-mode networks[J]. IEEE transactions on knowledge and data engineering, 2012, 24(1): 72-85.
[7] 邱均平,李威. 基于社会网络分析的博主与评论者关系研究——以“科学网博客”为例[J]. 情报科学, 2012, 30(7): 959-963.
[8] 蔡志斌. 知乎社区成员互动关系研究——以“小米手机”话题为例[J]. 图书情报工作, 2016, 60(17): 88-93.
[9] CHAN K W, LI S Y, ZHU J J. Fostering customer ideation in crowdsourcing community: the role of peer-to-peer and peer-to-firm interactions[J]. Journal of interactive marketing, 2015, 31(3): 42-62.
[10] 刘倩,孙宝文. COI社区在线交互对用户创意质量的影响——专业成功经验的调节效应[J]. 南开管理评论, 2018, 21(2): 16-27.
[11] WANG N, LI Q, LIANG H, et al. Understanding the importance of interaction between creators and backers in crowdfunding success[J]. Electronic commerce research and application, 2018, 27(1): 106-117.
[12] 詹天成,曹子君,王忠义. 基于社会网络分析的微博媒体领袖间的关系研究[J]. 情报科学, 2018, 36(8): 15-21.
[13] 邓胜利,蒋雨婷. 用户交互特征对知识付费行为预测的贡献度研究[J]. 图书情报工作, 2020, 64(8): 93-102.
[14] 庄倩,骆慧颖,戴岽丞,等. 用户交互对社会标注行为的差异影响研究——以豆瓣网为例[J]. 图书情报工作, 2020, 64(20): 117-128.
[15] CHEN Y B, WANG Q, XIE J H. Online social interactions: a natural experiment on word of mouth versus observational learning[J].Journal of marketing research, 2011, 48(2): 238-254.
[16] THIES F, WESSEL M, BENLIAN A. Effects of social interaction dynamics on platforms[J]. Journal of management information system, 2016, 33(3): 843-873.
[17] CHEUNG C, BO S, LIU I. Do actions speak louder than voices? the signaling role of social information cues in influencing consumer purchase decisions[J]. Decision support systems, 2014, 65(1): 50-58.
[18] TUCKER C, ZHANG J. How does popularity information affect choices? a field experiment[J]. Management science, 2011, 57(5): 828-842.
[19] 张海涛,周红磊,张鑫蕊,等. 在线社交网络的社区发现研究进展[J]. 图书情报工作, 2020, 64(9): 142-152.
[20] 刘军. 整体网分析讲义[M]. 上海: 世纪出版集团, 2009.
[21] 吴江,李姗姗,周露莎,等. 基于随机行动者模型的在线医疗社区用户关系网络动态演化研究[J]. 情报学报, 2017, 36(2): 213-220.
[22] 巴志超,李纲,毛进,等. 微信群内部信息交流的网络结构、行为及其演化分析——基于会话分析视角[J]. 情报学报, 2018, 37(10): 1009-1021.
[23] KARAN R, BISWAL B. A model for evolution of overlapping community networks[J]. Physica A: statistical mechanics and its applications, 2017, 47(4): 380-390.
[24] FREEMAN L C. Centrality in social networks: conceptual clarification[J]. Social networks, 1979(1): 215-240.
[25] 胡海波. 在线社会网络的结构、演化及动力学研究[D]. 上海:上海交通大学, 2010.
[26] 李立峰. 基于社会网络理论的顾客创新社区研究——成员角色、网络结构和网络演化[D]. 北京:北京交通大学, 2017.
[27] 邢小云. 在线社会网络结构演化及其对信息传播影响研究[D]. 合肥:合肥工业大学, 2012.
[28] CRUCITTI P, LATORA V, MARCHIORI M, et al. Efficiency of scale-free networks: error and attack tolerance [J]. Physica A, 2003, 320(6): 622-642.
[29] GIRVAN M, NEWMAN M E. Community structure in social and biological networks[J]. Proceedings of the Nationanl Academy of Sciences of the USA, 2002, 99(12): 7821-7826.
[30] BOLLOBÁS B. Random graphs[M]. London: Academic Press, 1985.
[31] WATTS D J, STROGATZ S H. Collective dynamics of “small-world” networks[J]. Nature, 1998, 393(6684): 440-442.
[32] BARABÁSI A L, ALBERT R. Emergence of scaling in random networks[J]. Science, 1999, 286(5439): 509-512.
[33] ALBERT R, BARABASI A L. Statistical mechanics of complex networks[J]. Review of modern physics, 2002, 74(1): 47-97.
[34] 陈晓君. 基于SNA的IdeaStorm众包创新社区网络结构特征研究[J]. 价值工程, 2019, 38(14): 58-61.
[35] AYDIN M N, PERDAHCI N Z. Dynamic network analysis of online interactive platform[J]. Information systems frontiers, 2019, 21(2): 229-240.
[36] CHAKRABARTI D, FALOUTSOS C. Graph evolution: densification and shrinking diameters[J]. ACM transactions on knowledge discovery from data, 2007, 1(1): 2-42.