专题:创新驱动战略下的技术预测方法与实践

技术预测研究现状、趋势及未来思考:数据分析视角

  • 张硕 ,
  • 汪雪锋 ,
  • 乔亚丽 ,
  • 刘玉琴
展开
  • 1. 北京理工大学管理与经济学院 北京 100081;
    2. 北京印刷学院新闻出版学院 北京 102600
张硕,博士研究生;乔亚丽,博士研究生;刘玉琴,高级工程师,博士。

收稿日期: 2021-11-19

  修回日期: 2022-01-16

  网络出版日期: 2022-06-01

基金资助

本文系国家自然科学基金项目"生物医学领域潜在颠覆性技术识别方法研究"(项目编号:72074020)研究成果之一。

Research Status, Trends and Future Thinking of Technology Forecasting: From the Perspective of Data Analytics

  • Zhang Shuo ,
  • Wang Xuefeng ,
  • Qiao Yali ,
  • Liu Yuqin
Expand
  • 1. School of Management and Economics, Beijing Institute of Technology, Beijing 100081;
    2. School of Journalism and Publishing, Beijing Institute of Graphic Communication, Beijing 102600

Received date: 2021-11-19

  Revised date: 2022-01-16

  Online published: 2022-06-01

摘要

[目的/意义]基于数据分析视角,从研究数据以及研究方法的变迁出发,对技术预测研究做出系统性分析。[方法/过程]为厘清发展脉络,本研究将基于数据分析的技术预测研究划分为萌芽阶段(1981-1991年)、成长阶段(1992-2010年)、扩张阶段(2011-2017年)和瓶颈阶段(2018年至今),通过综合运用文献计量法和知识图谱分析工具,对不同阶段的研究前沿进行深入分析。[结果/结论] 研究表明,技术预测一直朝着多层次、系统化的方向发展,但尚未完成"技术可能如何发展"到复杂环境下"技术应该如何发展"的跨越,而搭建科学数据共享平台,构建智能化分析软件以及发挥政府的宏观调控作用将是未来关注的焦点。

本文引用格式

张硕 , 汪雪锋 , 乔亚丽 , 刘玉琴 . 技术预测研究现状、趋势及未来思考:数据分析视角[J]. 图书情报工作, 2022 , 66(10) : 4 -18 . DOI: 10.13266/j.issn.0252-3116.2022.10.001

Abstract

[Purpose/Significance] From the change of the research data and research methods, this paper makes a systematic analysis of technology forecasting research from the perspective of data analytics.[Method/Process] In order to clarify its development process, this research divided the technology forecasting research based on data analytics into four stages of nascent phase (1981-1991), growth phase (1992-2010), expansion phase (2011-2017) and bottleneck phase (2018-present), and made an in-depth analysis of the research fronts under each stage through the comprehensive use of bibliometrics and knowledge map analysis tools.[Result/Conclusion] The results show that technology forecasting has been moving towards a multi-level and systematic direction, but it has not yet completed the leap from 'how technology may develop' to 'how technology should develop' in complex environments. Building a scientific data sharing platform and intelligent analysis software and giving full play to the role of government macro-control will be the focus of future attention.

参考文献

[1] 浦根祥, 孙中峰, 万劲波. 技术预见的定义及其与技术预测的关系[J]. 科技导报, 2002(7):14-18.
[2] 国务院. 国务院关于印发"十三五"国家科技创新规划的通知[EB/OL].[2021-09-24]. http://www.gov.cn/gongbao/content/2016/content_5103134.htm.
[3] 中华人民共和国中央人民政府. 中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要》(简称"十四五"规划)[EB/OL].[2021-03-13]. http://www.gov.cn/xinwen/2021-03/13/content_5592681.htm.
[4] 袁立科, 王书华. 走向系统性预测:中国的技术预测历程及实践[J]. 科学学与科学技术管理, 2021, 42(3):1-14.
[5] CHEN H, CHIANG R, STOREY V C. Business intelligence and analytics:from big data to big impact[J]. MIS quarterly, 2012, 36(4):1165-1188.
[6] IQBAL R, DOCTOR F, MORE B, et al. Big data analytics:computational intelligence techniques and application areas[J]. Technological forecasting and social change, 2018:S0040162517318498.
[7] LEE C. A review of data analytics in technological forecasting[J]. Technological forecasting and social change, 2021, 166(1):120646.
[8] 罗威, 武帅, 田昌海. 数据驱动的技术预测之研究评析——以fuse项目为例[J]. 情报理论与实践, 2019, 42(7):15-19,34.
[9] 罗威, 谭玉珊, 毛彬. 数据驱动的技术预测之多维透视[J]. 情报理论与实践, 2019, 42(7):11-14, 29.
[10] MARTINO J P. A review of selected recent advances in technological forecasting[J]. Technological forecasting & social change, 2003, 70(8):719-733.
[11] PORTER A L. Technology futures analysis:toward integration of the field & new methods[M]. New York:Elsevier, 2003.
[12] TRAN T A, DAIM T. A taxonomic review of methods and tools applied in technology assessment[J]. Technological forecasting & social change, 2008, 75(9):1396-1405.
[13] 周源, 刘怀兰, 廖岭, 等. 基于主题模型的技术预见定量方法综述[J]. 科技管理研究, 2017, 37(11):185-196.
[14] 李牧南. 技术预见研究热点的演进分析:内容挖掘视角[J]. 科研管理, 2018, 39(3):141-153.
[15] 汪雪锋, 张硕, 韩晓彤, 等. 技术预测研究现状与未来展望[J]. 农业图书情报, 2019, 31(6):4-11.
[16] ANDERSEN A D, ANDERSEN P D. Innovation system foresight[J]. Technological forecasting & social change, 2014, 88(10):276-286.
[17] 郭俊芳. 基于语义挖掘的技术创新路径分析与评价方法研究[D]. 北京:北京理工大学, 2016.
[18] PORTER A L, ASHTON W B, CLAR G, et al. Technology futures analysis:toward integration of the field and new methods[J]. Technological forecasting & social change, 2004, 71(3):287-303.
[19] PORTER A L, Detampel M J. Technology opportunities analysis[J]. Technological forecasting and social change, 1995, 49(3):237-255.
[20] LINTON J D, EMBRECHTS M. Mot tim journal rankings 2006[J]. Technovation, 2007, 27(3):91-94.
[21] 刘玉琴, 汪雪锋, 雷孝平. 科研关系构建与可视化系统设计与实现[J]. 图书情报工作, 2015, 59(8):103-125.
[22] WANG X F, ZHANG S, LIU Y Q. ITGinsight-discovering and visualizing science and technology information for generating competitive technological intelligence[J/OL]. Scientometrics, 2021.[2022-02-19]. https://link.springer.com/article/10.1007/s11192-021-04190-9.
[23] NOACK A. An energy model for visual graph clustering[J]. Proceedings of the 11th international symposium on graph drawing, 2003, 29(12):425-436.
[24] 王瑞祥, 穆荣平. 从技术预测到技术预见:理论与方法[J]. 世界科学, 2003(4):49-51.
[25] 穆荣平, 王瑞祥. 技术预见的发展及其在中国的应用[J]. 中国科学院院刊, 2004, 19(4):259-263.
[26] PORTER A L. Guidebook for technology assessment and impact analysis[J]. Scientometrics, 1981, 3(1):65-66.
[27] NEHNEVAJSA J, MENKES J. Technology assessment and risk analysis[J]. Technological forecasting & social change, 1981, 19(3):245-255.
[28] MERKHOFER M W. A process for technology assessment based on decision analysis[J]. Technological forecasting and social change, 1982, 22(3/4):237-265.
[29] ROBERTS E B. Exploratory and normative technological forecasting:a critical appraisal[J]. Technological forecasting, 1969, 1(2):113-127.
[30] 方伟, 曹学伟, 高晓巍. 技术预测与技术预见:内涵,方法及实践[J]. 全球科技经济瞭望, 2017, 32(3):46-53.
[31] CHAN L, DAIM T. Exploring the impact of technology foresight studies on innovation:case of bric countries[J]. Futures, 2012, 44(6):618-630.
[32] POPPER R. How are foresight methods selected?[J].Foresight, 2008(6):62-89.
[33] SARITAS O, ONER M A. Systemic analysis of UK foresight results:joint application of integrated management model and roadmapping[J]. Technological forecasting & social change, 2004, 71(1/2):27-65.
[34] KNNL T, BRUMMER V, SALO A. Diversity in foresight:insights from the fostering of innovation ideas[J]. Technological forecasting & social change, 2007, 74(5):608-626.
[35] 梁帅, 赵立新. 风险社会情境下技术预见的内涵、挑战和实施框架[J]. 科学学与科学技术管理, 2021, 42(3):64-75.
[36] ROGERS E M. A diffusion of innovations[M]. New York:The Free Press, 1995.
[37] 黄鲁成, 王宁. 专利视角下的技术扩散研究综述[J]. 科学学与科学技术管理, 2011,32(10):27-34.
[38] JAFFE A B, HENDERSON T R. Geographic localization of knowledge spillovers as evidenced by patent citations[J]. Quarterly journal of economics, 1993, 108(3):577-598.
[39] 赵蓉英, 李新来, 李丹阳. 专利引证视角下的核心专利研究——以人工智能领域为例[J]. 情报理论与实践, 2019, 42(3):78-84.
[40] CRISTENSEN C M. The innovator's dilemma:when new tech- nologies cause great firms to fail[M]. Boston:Harvard Business School Press, 1997.
[41] CHARITOU C D, MARKIDES C. Responses to disruptive strategic innovation[J]. MIT Sloan management review, 2003, 44(2):55-63.
[42] GILBERT C. Disruption opportunity[J]. MIT Sloan management review, 2003, 44(4):27-32.
[43] PAAP J, KATZ R. Anticipating disruptive innovation[J]. IEEE engineering management review, 2004, 32(4):74-85.
[44] LICHTENTHALER E. Managing technology intelligence processes in situations of radical technological change[J]. Technological forecasting and social change, 2007, 74(8):1109-1136.
[45] ASHTON W B, STACEY G S. Technical intelligence in business:understanding technology threats and opportunities[J]. International journal of technology management, 1995, 10(1):79-104.
[46] RAFII F, KAMPAS P J. How to identify your enemies before they destroy you[J]. Harvard business review, 2002, 80(11):115-123.
[47] CHRISTENSEN C M, ANTHONY S D, ROTH E A. Seeing what's next[M]. Boston:Harvard Business School Press, 2004.
[48] HVSIG S, HIPP C, DOWLING M. Analyzing disruptive potential:an updated case of w-lan an mobile communications network companies in Germany[J]. R&D management, 2005, 35:17-35.
[49] KELLER A, HUESIG S. Ex ante identification of disruptive innovations in the software industry applied to web applications:the case of microsoft's vs. Google's office applications[J]. Technological forecasting & social change, 2009, 76(8):1044-1054.
[50] 王光宏, 蒋平. 数据挖掘综述[J]. 同济大学学报(自然科学版), 2004(2):112-118.
[51] WANG X, MA P, HUANG Y, et al. Combining sao semantic analysis and morphology analysis to identify technology opportunities[J]. Scientometrics, 2017, 111(1):3-24.
[52] WANG X, QIU P, ZHU D, et al. Identification of technology development trends based on subject-action-object analysis:the case of dye-sensitized solar cells[J]. Technological forecasting and social change, 2015, 98(5):24-46.
[53] NEWMAN N C, PORTER A L, NEWMAN D, et al. Comparing methods to extract technical content for technological intelligence-sciencedirect[J]. Journal of engineering and technology management, 2014, 32(1):97-109.
[54] PHAAL R, FARRUKH C, PROBERT D R. Technology roadmapping-a planning framework for evolution and revolution[J]. Technological forecasting & social change, 2004, 71(1/2):5-26.
[55] 李雪凤, 仝允桓, 谈毅. 技术路线图——一种新型技术管理工具[J]. 科学学研究, 2004, 22(Z1):89-94.
[56] LI X, ZHOU Y, XUE L, et al. Integrating bibliometrics and roadmapping methods:a case of dye-sensitized solar cell technology-based industry in China[J]. Technological forecasting & social change, 2015, 97:205-222.
[57] GEUM Y, LEE H J, LEE Y, et al. Development of data-driven technology roadmap considering dependency:an arm-based technology roadmapping[J]. Technological forecasting & social change, 2015, 91:264-279.
[58] 弗里曼. 技术政策与经济绩效:日本国家创新系统的经验[M]. 张宇轩,译.南京:东南大学出版社, 2008.
[59] COOKE P. Regional innovation systems:competitive regulation in the new Europe[J]. Geoforum, 1992, 23(3):365-382.
[60] BLEI D M, NG A Y, JORDAN M I. Latent dirichlet allocation[J]. Journal of machine learning research, 2003, 3:993-1022.
[61] HAN X, ZHU D, LEI M, et al. R&D trend analysis based on patent mining:an integrated use of patent applications and invalidation data[J]. Technological forecasting and social change, 2021, 167(2):120691.
[62] LIU H, CHEN Z, TANG J, et al. Mapping the technology evolution path:a novel model for dynamic topic detection and tracking[J]. Scientometrics, 2020, 125(3):2043-2090.
[63] JANG H, JEONG Y, YOON B. Techword:development of a technology lexical database for structuring textual technology information based on natural language processing[J]. Expert systems with applications, 2021, 164:114042.
[64] KIM S, PARK H, LEE J. Word2vec-based latent semantic analysis (w2v-lsa) for topic modeling:a study on blockchain technology trend analysis[J]. Expert systems with applications, 2020, 152:113401.
[65] KIM J, GEUM Y. How to develop data-driven technology roadmaps:the integration of topic modeling and link prediction[J]. Technological forecasting and social change, 2021, 171:120972.
[66] ZHANG H, DAIM T, ZHANG Y. Integrating patent analysis into technology roadmapping:a latent dirichlet allocation based technology assessment and roadmapping in the field of blockchain-sciencedirect[J]. Technological forecasting and social change,2021, 167(12):120729.
[67] MITTAL V, DAVIDSON A. Combining wargaming with modeling and simulation to project future military technology requirements[J]. IEEE transactions on engineering management, 2020(99):1-13.
[68] JEONG Y, JANG H, YOON B. Developing a risk-adaptive technology roadmap using a bayesian network and topic modeling under deep uncertainty[J]. Scientometrics, 2021, 126(4):3697-3722.
[69] 刘雨农, 是沁. 数据驱动范式下的人文社科知识服务创新研究[J]. 图书与情报, 2019(1):24-30.
[70] 邓仲华, 李志芳. 科学研究范式的演化——大数据时代的科学研究第四范式[J]. 情报资料工作, 2013(4):19-23.
[71] GovTech. Digital government blueprint[EB/OL].[2021-07-11]. https://www.tech.gov.sg/digital-government-blueprint/.
[72] 陈美. 日本开放政府数据分析及对我国的启示[J]. 图书馆, 2018(6):8-14.
[73] 马丽杰, 马海群. 基于pest分析的发达国家开放政府数据政策特点及启示[J]. 图书馆理论与实践, 2018(5):7-11, 41.
文章导航

/