[1] ARTS S, VEUGELERS R. The technological origins and novelty of breakthrough inventions[R/OL]. FEB Research Report-MSI_1302. https://lirias.kuleuven.be/1830744?limo=0, 2013.
[2] 库恩.科学革命的结构[M].金吾伦,胡新和,译.北京:北京大学出版社, 2003.
[3] XU S, HAO L, AN X, et al. Review on emerging research topics with key-route main path analysis[J]. Scientometrics, 2020, 122(1):607-624.
[4] 卢超,侯海燕, DING Y,等.国外新兴研究话题发现研究综述[J].情报学报, 2019, 38(1):97-110.
[5] 张丽华.研究前沿探测及其演化分析方法与实证研究[D].北京:中国科学院大学, 2015.
[6] PRICE D J D. Networks of scientific papers[J]. Science, 1965, 149(3683):510-515.
[7] SMALL H. Co-citation in the scientific literature:a new measure of the relationship between two documents[J]. Journal of the American Society for Information Science, 1973, 24(4):265-269.
[8] BRAAM R R, MOED H F, VAN RAAN A F J. Mapping of science by combined co-citation and word analysis[J]. Journal of the American Society for Information Science, 1991, 42(4):233-251.
[9] PERSSON O. The Intellectual Base and Research Fronts of JASIS 1986-1990[J]. Journal of the American Society for Information Science, 1994, 45(1):31-38.
[10] GARFIELD E. Research fronts[J]. Current contents, 1994(41):3-7.
[11] BHATTACHARYA S, BASU P K. Mapping a research area at the micro level using co-word analysis[J]. Scientometrics, 1998, 43(3):359-372.
[12] MORRIS S A, YEN G, WU Z, et al. Time line visualization of research fronts[J]. Journal of the American Society for Information Science and Technology, 2003, 54(5):413-422.
[13] CHEN C. CiteSpace II:Detecting and visualizing emerging trends and transient patterns in scientific literature[J]. Journal of the American Society for Information Science and Technology, 2006, 57(3):359-377.
[14] SHIBATA N, KAJIKAWA Y, TAKEDA Y, et al. Detecting emerging research fronts based on topological measures in citation networks of scientific publications[J]. Technovation, 2008, 28(11):758-775.
[15] UPHAM S, SMALL H. Emerging research fronts in science and technology:patterns of new knowledge development[J]. Scientometrics, 2010, 83(1):15-38.
[16] 许晓阳,郑彦宁,赵筱媛,等.研究前沿识别方法的研究进展[J].情报理论与实践, 2014, 37(6):139-144.
[17] 郑彦宁,许晓阳,刘志辉.基于关键词共现的研究前沿识别方法研究[J].图书情报工作, 2016, 60(4):85-92.
[18] 钟镇.从高被引与零被引论文的引文结构差异看Research Front与Research Frontier的区别[J].图书情报工作, 2015, 59(8):87-96.
[19] 郭涵宁.多元科学指标视角下的新兴研究领域识别探索[D].大连:大连理工大学, 2013.
[20] 罗瑞,许海云,董坤.领域前沿识别方法综述[J].图书情报工作, 2018, 23(62):119-131.
[21] 刘海峰.高等教育学:在学科与领域之间[J].高等教育研究, 2009, 30(11):45-50.
[22] 沙振江,张蓉,刘桂锋.国内技术预见方法研究述评[J].情报理论与实践, 2015, 38(6):140-144,120.
[23] CUHLS K. From forecasting to foresight processes-new participative foresight activities in Germany[J]. Journal of forecasting, 2003, 22(2-3):93-111.
[24] SMALL H. A co-citation model of a scientific specialty:a longitudinal study of collagen research[J]. Social studies of science, 1977, 7(2):139-166.
[25] BOYACK K W, KLAVANS R. Co-citation analysis, bibliographic coupling, and direct citation:which citation approach represents the research front most accurately?[J]. Journal of the American Society for Information Science and Technology, 2010, 61(12):2389-2404.
[26] GARFIELD E. Citation indexes in sociological and historical research[J]. American documentation, 1963, 14(4):289-291.
[27] KLAVANS R, BOYACK K W. Identifying a better measure of relatedness for mapping science[J]. Journal of the American Society for Information Science and Technology, 2006, 57(2):251-263.
[28] SMALL H, GRIGGITH B C. The structure of scientific literatures I:identifying and graphing specialties[J]. Science studies, 1974, 4(1):17-40.
[29] GRIFFITH B C, SMALL H G, STONEHILL J A, et al. The structure of scientific literatures II:toward a macro-and microstructure for science[J]. Science studies, 1974, 4(4):339-365.
[30] SMALL H, SWEENEY E, GREENLEE E. Clustering the Science Citation Index using co-citations[J]. Scientometrics, 1985, 8(5/6):321-340.
[31] MARSHAKOVA I V. System of document connections based on references[J]. Nauchno-tekhnicheskaya informatsiya seriya 2-informatsionnye protsessy I sistemy, 1973(6):3-8.
[32] KESSLER M M. Bibliographic coupling between scientific papers[J]. American documentation, 1963, 14(1):10-25.
[33] GLÄNZEL W, CZERWON H. A new methodological approach to bibliographic coupling and its application to the national, regional and institutional level[J]. Scientometrics, 1996, 37(2):195-221.
[34] HUANG M H, CHANG C P. Detecting research fronts in OLED field using bibliographic coupling with sliding window[J]. Scientometrics, 2014, 98(3):1721-1744.
[35] SHIBATA N, KAJIKAWA Y, TAKEDA Y, et al. Comparative study on methods of detecting research fronts using different types of citation[J]. Journal of the American Society for Information Science and Technology, 2009, 60(3):571-580.
[36] SHARABCHIEV J. Cluster analysis of bibliographic references as a scientometric method[J]. Scientometrics, 1989, 15(1/2):127-137.
[37] JARNEVING B. A comparison of two bibliometric methods for mapping of the research front[J]. Scientometrics, 2005, 65(2):245-263.
[38] JARNEVING B. Bibliographic coupling and its application to research-front and other core documents[J]. Journal of informetrics, 2007, 1(4):287-307.
[39] HUANG M H, CHANG C P. A comparative study on detecting research fronts in the organic light-emitting diode (OLED) field using bibliographic coupling and co-citation[J]. Scientometrics, 2015, 102(3):2041-2057.
[40] ZHAO D, STROTMANN A. Evolution of research activities and intellectual influences in information science 1996-2005:introducing author bibliographic-coupling analysis[J]. Journal of the American Society for Information Science and Technology, 2008, 59(13):2070-2086.
[41] ZHAO D, STROTMANN A. Information science during the first decade of the Web:an enriched author co-citation analysis[J]. Journal of the American Society for Information Science and Technology, 2008, 59(6):916-937.
[42] CHEN C, IBEKWE-SANJUAN F, HOU J. The structure and dynamics of co-citation clusters:A multiple-perspective co-citation analysis[J]. Journal of the American Society for Information Science and Technology, 2010, 61(7):1386-1409.
[43] BOYACK K W, KLAVANS R, SMALL H, et al. Characterizing the emergence of two nanotechnology topics using a contemporaneous global micro-model of science[J]. Journal of engineering and technology management, 2014, 32:147-159.
[44] BOYACK K W, KLAVANS R. Creation of a highly detailed, dynamic, global model and map of science[J]. Journal of the Association for Information Science and Technology, 2014, 65(4):670-685.
[45] LEE S, PARK Y, YOON W C. Burst analysis for automatic concept map creation with a single document[J]. Expert systems with applications, 2015, 42(22):8817-8829.
[46] KLEINBERG J. Bursty and hierarchical structure in streams[J]. Data mining and knowledge discovery, 2003, 7(4):373-397.
[47] LI M N, CHU Y Q. Explore the research front of a specific research theme based on a novel technique of enhanced co-word analysis[J]. Journal of information science, 2017, 43(6):725-741.
[48] CALLON M, COURTIAL J P, TURNER W A, et al. From translations to problematic networks:an introduction to co-word analysis[J]. Social science information, 1983, 22(2):191-235.
[49] JOUNG J, KIM K. Monitoring emerging technologies for technology planning using technical keyword based analysis from patent data[J]. Technological forecasting and social change, 2017, 114:281-292.
[50] KATSURAI M, ONO S. TrendNets:mapping emerging research trends from dynamic co-word networks via sparse representation[J]. Scientometrics, 2019, 121(3):1583-1598.
[51] 侯海燕,刘则渊,栾春娟.基于知识图谱的国际科学计量学研究前沿计量分析[J].科研管理, 2009, 30(1):164-170.
[52] 周丽英,冷伏海,左文革.引文耦合增强的共词分析方法改进研究——以ESI农业科学研究主题划分为例[J].情报理论与实践, 2015, 38(11):120-125.
[53] VAN DEN BESSELAAR P, HEIMERIKS G. Mapping research topics using word-reference co-occurrences:a method and an exploratory case study[J]. Scientometrics, 2006, 68(3):377-393.
[54] 白如江,刘博文,冷伏海.基于多维指标的未来新兴科学研究前沿识别研究[J].情报学报, 2020, 39(7):747-760.
[55] 张婧,刘彦君,张炜,等.基于科研项目数据的科技前沿识别有效路径实证探索[J].科技管理研究, 2019, 39(16):108-119.
[56] 邓启平,陈卫静,张玲玲,等.基于多维特征测度的人工智能领域研究前沿分析[J].情报杂志, 2020, 39(3):56-62.
[57] PARK I, LEE K, YOON B. Exploring promising research frontiers based on knowledge maps in the solar cell technology field[J]. Sustainability, 2015, 7(10):13660-13689.
[58] 曾海娇,孙巍.基于专利与论文关联的潜在科学前沿识别——以生物农药领域为例[J].农业展望, 2020, 16(9):93-100.
[59] 王菲菲,刘明. Altmetrics视角下的交叉学科研究前沿探测——以医学信息学领域为例[J].情报学报, 2020, 39(10):1011-1020.
[60] KLAVANS R, BOYACK K W. Using global mapping to create more accurate document-level maps of research fields[J]. Journal of the American Society for Information Science and Technology, 2011, 62(1):1-18.
[61] SMALL H, BOYACK K W, KLAVANS R. Identifying emerging topics in science and technology[J]. Research policy, 2014, 43(8):1450-1467.
[62] AZOULAY, P. Small research teams'disrupt'science more radically than large ones[J]. Nature, 2019, 566(7744):330-332.
[63] BORNMANN L, TEKLES A. Disruptive papers published in Scientometrics[J]. Scientometrics, 2019, 120(1):331-336.
[64] COZZENS S, GATCHAIR S, KANG J, et al. Emerging technologies:quantitative identification and measurement[J]. Technology analysis&strategic management, 2010, 22(3):361-376.
[65] GUO H, WEINGART S, BÖRNER K. Mixed-indicators model for identifying emerging research areas[J]. Scientometrics, 2011, 89(1):421-435.
[66] ROTOLO D, HICKS D, MARTIN B R. What is an emerging technology?[J]. Research policy, 2015, 44(10):1827-1843.
[67] GARNER J, CARLEY S, PORTER A L, et al. Technological emergence indicators using emergence scoring[C]//2017 Portland international conference on management of engineering and technology. IEEE, 2017:1-12.
[68] CARLEY S F, NEWMAN N C, PORTER A L, et al. An indicator of technical emergence[J]. Scientometrics, 2018, 115(1):35-49.
[69] PORTER A L, GARNER J, CARLEY S F, et al. Emergence scoring to identify frontier R&D topics and key players[J]. Technological forecasting and social change, 2019, 146:628-643.
[70] WANG Z, PORTER A L, WANG X, et al. An approach to identify emergent topics of technological convergence:a case study for 3D printing[J]. Technological forecasting and social change, 2019, 146:723-732.
[71] 刘自强.基于主题扩散演化滞后的研究前沿识别研究[D].北京:中国科学院大学, 2020.
[72] 范云满,马建霞.基于LDA与新兴主题特征分析的新兴主题探测研究[J].情报学报, 2014, 33(7):698-711.
[73] YOON J, PARK H, KIM K. Identifying technological competition trends for R&D planning using dynamic patent maps:SAO-based content analysis[J]. Scientometrics, 2013, 94(1):313-331.
[74] CASCINE G, ZINI M. Measuring patent similarity by comparing inventions functional trees[M]. Boston:Springer, 2008.
[75] 李欣,谢前前,黄鲁成,等.基于SAO结构语义挖掘的新兴技术演化轨迹研究[J].科学学与科学技术管理, 2018, 39(1):17-31.
[76] 黄鲁成,张璐,吴菲菲,等.基于突现文献和SAO相似度的新兴主题识别研究[J].科学学研究, 2016, 34(6):814-821.
[77] POTTENGER W M, YANG T. Detecting emerging concepts in text data mining[M]//BERRY M. Computational information retrieval. Philadelphia:Society for Industrial and Applied Mathematics, 2001:89-105.
[78] KONTOSTATHIS A, GALITSKY L M, POTTENGER W M, et al. A survey of emerging trend detection in textual data mining[A]//Survey of text mining[M]. New York:Springer, 2004:185-224.
[79] BLEI D M, NG A Y, JORDAN M I. Latent dirichlet allocation[J]. Journal of machine learning research, 2003, 3:993-1022.
[80] MIKOLOV T, CHEN K, CORRADO G, et al. Efficient estimation of word representations in vector space[J]. ArXiv preprint arXiv:1301.3781, 2013.
[81] XU S, HAO L, YANG G, et al. A topic models based framework for detecting and forecasting emerging technologies[J]. Technological forecasting and social change, 2021, 162:120366.
[82] LEE C, KWON O, KIM M, et al. Early identification of emerging technologies:a machine learning approach using multiple patent indicators[J]. Technological forecasting and social change, 2018, 127:291-303.
[83] 李欣,温阳,黄鲁成,等.一种基于机器学习的研究前沿识别方法研究[J].科研管理, 2021, 42(1):20-32.
[84] XU S, HAO L, AN X, et al. Emerging research topics detection with multiple machine learning models[J]. Journal of informetrics, 2019, 13(4):100983.
[85] 李静,徐路路,赵素君.基于时间序列分析和SVM模型的基金项目新兴主题趋势预测与可视化研究[J].情报理论与实践, 2019, 42(1):118-123,152.
[86] 岳丽欣,刘自强,胡正银.面向趋势预测的热点主题演化分析方法研究[J].数据分析与知识发现, 2020, 4(6):22-34.