综述述评

学科领域研究前沿识别方法研究进展

  • 张雪 ,
  • 张志强 ,
  • 曹玲静 ,
  • 阮伟南 ,
  • 任晓亚 ,
  • 冯志刚
展开
  • 1. 中国科学院成都文献情报中心 成都 610041;
    2. 中国科学院大学经济与管理学院图书情报与档案管理系 北京 100190
张雪,博士研究生;曹玲静,博士研究生;阮伟男,博士研究生;任晓亚,博士研究生;冯志刚,博士研究生。

收稿日期: 2021-12-06

  修回日期: 2022-02-21

  网络出版日期: 2022-06-25

基金资助

本文系国家社会科学基金重点项目"面向领域知识发现的学科信息学理论与应用研究"(项目编号:17ATQ008)研究成果之一。

Research Progress of Research Front Recognition Methods in Subject Fields

  • Zhang Xue ,
  • Zhang Zhiqiang ,
  • Cao Lingjing ,
  • Ruan Weinan ,
  • Ren Xiaoya ,
  • Feng Zhigang
Expand
  • 1. Chengdu Library and Information Center, Chinese Academy of Sciences, Chengdu 610041;
    2 Department of Library, Information and Archives Management, School of Economics and Management, University of Chinese Academy of Sciences, Beijing 100190

Received date: 2021-12-06

  Revised date: 2022-02-21

  Online published: 2022-06-25

摘要

[目的/意义]梳理国内外研究前沿相关成果,归纳总结现有研究存在的问题,为学科领域研究前沿识别提供参考借鉴。[方法/过程]首先对研究前沿识别的必要性进行归纳总结,其次对相关概念进行辨析,再次在调研国内外相关研究基础上从研究前沿识别方法研究、研究前沿识别新方向两个层面对其进行归纳整理,最后指出现有研究不足并对未来发展提出展望。[结果/结论]就概念界定而言,通过从时间维度和定义范围两方面辨析与研究前沿相关的系列概念,最终明确研究前沿的内涵。就识别方法而言,经典的研究方法包括直接引用、共被引分析、文献耦合以及基于词簇的研究前沿识别方法;同时,基于多源数据、多维指标以及机器学习算法的研究前沿识别是未来研究的新方向。在以上分析基础上,总结不同类型研究前沿识别方法的不足以及存在的普适性问题,并对未来研究重点进行展望。

本文引用格式

张雪 , 张志强 , 曹玲静 , 阮伟南 , 任晓亚 , 冯志刚 . 学科领域研究前沿识别方法研究进展[J]. 图书情报工作, 2022 , 66(12) : 139 -151 . DOI: 10.13266/j.issn.0252-3116.2022.12.013

Abstract

[Purpose/Significance] Sorting out the relevant researches of domestic and foreign research front, this paper summarizes the problems existing in the existing researches, and provides references for the identification of the research front in the subject field. [Method/Process] This paper first summarized the necessity of research front identification, then discriminated the relevant concepts. Subsequently, based on the investigation of domestic and foreign relevant researches, this paper classified it from two aspects of the research methods of research front identification and the new direction of research front identification, and finally put forward the existing research deficiencies and prospects for the future development. [Result/Conclusion] In terms of concept definition, the connotation of the research front is finally clarified by analyzing the series of concepts related to the research front from two perspectives of the time dimension and the definition scope. In terms of identification methods, classical research methods include direct citation, co-citation analysis, literature coupling, and word cluster-based methods for identifying research fronts; at the same time, research front identification based on multi-source data, multi-dimensional indicators and machine learning algorithms is a new direction of the future research. On the basis of the above analysis, this paper summarizes the shortcomings of different types of research front identification methods and the existing universal problems, and looks forward to the future research priorities.

参考文献

[1] ARTS S, VEUGELERS R. The technological origins and novelty of breakthrough inventions[R/OL]. FEB Research Report-MSI_1302. https://lirias.kuleuven.be/1830744?limo=0, 2013.
[2] 库恩.科学革命的结构[M].金吾伦,胡新和,译.北京:北京大学出版社, 2003.
[3] XU S, HAO L, AN X, et al. Review on emerging research topics with key-route main path analysis[J]. Scientometrics, 2020, 122(1):607-624.
[4] 卢超,侯海燕, DING Y,等.国外新兴研究话题发现研究综述[J].情报学报, 2019, 38(1):97-110.
[5] 张丽华.研究前沿探测及其演化分析方法与实证研究[D].北京:中国科学院大学, 2015.
[6] PRICE D J D. Networks of scientific papers[J]. Science, 1965, 149(3683):510-515.
[7] SMALL H. Co-citation in the scientific literature:a new measure of the relationship between two documents[J]. Journal of the American Society for Information Science, 1973, 24(4):265-269.
[8] BRAAM R R, MOED H F, VAN RAAN A F J. Mapping of science by combined co-citation and word analysis[J]. Journal of the American Society for Information Science, 1991, 42(4):233-251.
[9] PERSSON O. The Intellectual Base and Research Fronts of JASIS 1986-1990[J]. Journal of the American Society for Information Science, 1994, 45(1):31-38.
[10] GARFIELD E. Research fronts[J]. Current contents, 1994(41):3-7.
[11] BHATTACHARYA S, BASU P K. Mapping a research area at the micro level using co-word analysis[J]. Scientometrics, 1998, 43(3):359-372.
[12] MORRIS S A, YEN G, WU Z, et al. Time line visualization of research fronts[J]. Journal of the American Society for Information Science and Technology, 2003, 54(5):413-422.
[13] CHEN C. CiteSpace II:Detecting and visualizing emerging trends and transient patterns in scientific literature[J]. Journal of the American Society for Information Science and Technology, 2006, 57(3):359-377.
[14] SHIBATA N, KAJIKAWA Y, TAKEDA Y, et al. Detecting emerging research fronts based on topological measures in citation networks of scientific publications[J]. Technovation, 2008, 28(11):758-775.
[15] UPHAM S, SMALL H. Emerging research fronts in science and technology:patterns of new knowledge development[J]. Scientometrics, 2010, 83(1):15-38.
[16] 许晓阳,郑彦宁,赵筱媛,等.研究前沿识别方法的研究进展[J].情报理论与实践, 2014, 37(6):139-144.
[17] 郑彦宁,许晓阳,刘志辉.基于关键词共现的研究前沿识别方法研究[J].图书情报工作, 2016, 60(4):85-92.
[18] 钟镇.从高被引与零被引论文的引文结构差异看Research Front与Research Frontier的区别[J].图书情报工作, 2015, 59(8):87-96.
[19] 郭涵宁.多元科学指标视角下的新兴研究领域识别探索[D].大连:大连理工大学, 2013.
[20] 罗瑞,许海云,董坤.领域前沿识别方法综述[J].图书情报工作, 2018, 23(62):119-131.
[21] 刘海峰.高等教育学:在学科与领域之间[J].高等教育研究, 2009, 30(11):45-50.
[22] 沙振江,张蓉,刘桂锋.国内技术预见方法研究述评[J].情报理论与实践, 2015, 38(6):140-144,120.
[23] CUHLS K. From forecasting to foresight processes-new participative foresight activities in Germany[J]. Journal of forecasting, 2003, 22(2-3):93-111.
[24] SMALL H. A co-citation model of a scientific specialty:a longitudinal study of collagen research[J]. Social studies of science, 1977, 7(2):139-166.
[25] BOYACK K W, KLAVANS R. Co-citation analysis, bibliographic coupling, and direct citation:which citation approach represents the research front most accurately?[J]. Journal of the American Society for Information Science and Technology, 2010, 61(12):2389-2404.
[26] GARFIELD E. Citation indexes in sociological and historical research[J]. American documentation, 1963, 14(4):289-291.
[27] KLAVANS R, BOYACK K W. Identifying a better measure of relatedness for mapping science[J]. Journal of the American Society for Information Science and Technology, 2006, 57(2):251-263.
[28] SMALL H, GRIGGITH B C. The structure of scientific literatures I:identifying and graphing specialties[J]. Science studies, 1974, 4(1):17-40.
[29] GRIFFITH B C, SMALL H G, STONEHILL J A, et al. The structure of scientific literatures II:toward a macro-and microstructure for science[J]. Science studies, 1974, 4(4):339-365.
[30] SMALL H, SWEENEY E, GREENLEE E. Clustering the Science Citation Index using co-citations[J]. Scientometrics, 1985, 8(5/6):321-340.
[31] MARSHAKOVA I V. System of document connections based on references[J]. Nauchno-tekhnicheskaya informatsiya seriya 2-informatsionnye protsessy I sistemy, 1973(6):3-8.
[32] KESSLER M M. Bibliographic coupling between scientific papers[J]. American documentation, 1963, 14(1):10-25.
[33] GLÄNZEL W, CZERWON H. A new methodological approach to bibliographic coupling and its application to the national, regional and institutional level[J]. Scientometrics, 1996, 37(2):195-221.
[34] HUANG M H, CHANG C P. Detecting research fronts in OLED field using bibliographic coupling with sliding window[J]. Scientometrics, 2014, 98(3):1721-1744.
[35] SHIBATA N, KAJIKAWA Y, TAKEDA Y, et al. Comparative study on methods of detecting research fronts using different types of citation[J]. Journal of the American Society for Information Science and Technology, 2009, 60(3):571-580.
[36] SHARABCHIEV J. Cluster analysis of bibliographic references as a scientometric method[J]. Scientometrics, 1989, 15(1/2):127-137.
[37] JARNEVING B. A comparison of two bibliometric methods for mapping of the research front[J]. Scientometrics, 2005, 65(2):245-263.
[38] JARNEVING B. Bibliographic coupling and its application to research-front and other core documents[J]. Journal of informetrics, 2007, 1(4):287-307.
[39] HUANG M H, CHANG C P. A comparative study on detecting research fronts in the organic light-emitting diode (OLED) field using bibliographic coupling and co-citation[J]. Scientometrics, 2015, 102(3):2041-2057.
[40] ZHAO D, STROTMANN A. Evolution of research activities and intellectual influences in information science 1996-2005:introducing author bibliographic-coupling analysis[J]. Journal of the American Society for Information Science and Technology, 2008, 59(13):2070-2086.
[41] ZHAO D, STROTMANN A. Information science during the first decade of the Web:an enriched author co-citation analysis[J]. Journal of the American Society for Information Science and Technology, 2008, 59(6):916-937.
[42] CHEN C, IBEKWE-SANJUAN F, HOU J. The structure and dynamics of co-citation clusters:A multiple-perspective co-citation analysis[J]. Journal of the American Society for Information Science and Technology, 2010, 61(7):1386-1409.
[43] BOYACK K W, KLAVANS R, SMALL H, et al. Characterizing the emergence of two nanotechnology topics using a contemporaneous global micro-model of science[J]. Journal of engineering and technology management, 2014, 32:147-159.
[44] BOYACK K W, KLAVANS R. Creation of a highly detailed, dynamic, global model and map of science[J]. Journal of the Association for Information Science and Technology, 2014, 65(4):670-685.
[45] LEE S, PARK Y, YOON W C. Burst analysis for automatic concept map creation with a single document[J]. Expert systems with applications, 2015, 42(22):8817-8829.
[46] KLEINBERG J. Bursty and hierarchical structure in streams[J]. Data mining and knowledge discovery, 2003, 7(4):373-397.
[47] LI M N, CHU Y Q. Explore the research front of a specific research theme based on a novel technique of enhanced co-word analysis[J]. Journal of information science, 2017, 43(6):725-741.
[48] CALLON M, COURTIAL J P, TURNER W A, et al. From translations to problematic networks:an introduction to co-word analysis[J]. Social science information, 1983, 22(2):191-235.
[49] JOUNG J, KIM K. Monitoring emerging technologies for technology planning using technical keyword based analysis from patent data[J]. Technological forecasting and social change, 2017, 114:281-292.
[50] KATSURAI M, ONO S. TrendNets:mapping emerging research trends from dynamic co-word networks via sparse representation[J]. Scientometrics, 2019, 121(3):1583-1598.
[51] 侯海燕,刘则渊,栾春娟.基于知识图谱的国际科学计量学研究前沿计量分析[J].科研管理, 2009, 30(1):164-170.
[52] 周丽英,冷伏海,左文革.引文耦合增强的共词分析方法改进研究——以ESI农业科学研究主题划分为例[J].情报理论与实践, 2015, 38(11):120-125.
[53] VAN DEN BESSELAAR P, HEIMERIKS G. Mapping research topics using word-reference co-occurrences:a method and an exploratory case study[J]. Scientometrics, 2006, 68(3):377-393.
[54] 白如江,刘博文,冷伏海.基于多维指标的未来新兴科学研究前沿识别研究[J].情报学报, 2020, 39(7):747-760.
[55] 张婧,刘彦君,张炜,等.基于科研项目数据的科技前沿识别有效路径实证探索[J].科技管理研究, 2019, 39(16):108-119.
[56] 邓启平,陈卫静,张玲玲,等.基于多维特征测度的人工智能领域研究前沿分析[J].情报杂志, 2020, 39(3):56-62.
[57] PARK I, LEE K, YOON B. Exploring promising research frontiers based on knowledge maps in the solar cell technology field[J]. Sustainability, 2015, 7(10):13660-13689.
[58] 曾海娇,孙巍.基于专利与论文关联的潜在科学前沿识别——以生物农药领域为例[J].农业展望, 2020, 16(9):93-100.
[59] 王菲菲,刘明. Altmetrics视角下的交叉学科研究前沿探测——以医学信息学领域为例[J].情报学报, 2020, 39(10):1011-1020.
[60] KLAVANS R, BOYACK K W. Using global mapping to create more accurate document-level maps of research fields[J]. Journal of the American Society for Information Science and Technology, 2011, 62(1):1-18.
[61] SMALL H, BOYACK K W, KLAVANS R. Identifying emerging topics in science and technology[J]. Research policy, 2014, 43(8):1450-1467.
[62] AZOULAY, P. Small research teams'disrupt'science more radically than large ones[J]. Nature, 2019, 566(7744):330-332.
[63] BORNMANN L, TEKLES A. Disruptive papers published in Scientometrics[J]. Scientometrics, 2019, 120(1):331-336.
[64] COZZENS S, GATCHAIR S, KANG J, et al. Emerging technologies:quantitative identification and measurement[J]. Technology analysis&strategic management, 2010, 22(3):361-376.
[65] GUO H, WEINGART S, BÖRNER K. Mixed-indicators model for identifying emerging research areas[J]. Scientometrics, 2011, 89(1):421-435.
[66] ROTOLO D, HICKS D, MARTIN B R. What is an emerging technology?[J]. Research policy, 2015, 44(10):1827-1843.
[67] GARNER J, CARLEY S, PORTER A L, et al. Technological emergence indicators using emergence scoring[C]//2017 Portland international conference on management of engineering and technology. IEEE, 2017:1-12.
[68] CARLEY S F, NEWMAN N C, PORTER A L, et al. An indicator of technical emergence[J]. Scientometrics, 2018, 115(1):35-49.
[69] PORTER A L, GARNER J, CARLEY S F, et al. Emergence scoring to identify frontier R&D topics and key players[J]. Technological forecasting and social change, 2019, 146:628-643.
[70] WANG Z, PORTER A L, WANG X, et al. An approach to identify emergent topics of technological convergence:a case study for 3D printing[J]. Technological forecasting and social change, 2019, 146:723-732.
[71] 刘自强.基于主题扩散演化滞后的研究前沿识别研究[D].北京:中国科学院大学, 2020.
[72] 范云满,马建霞.基于LDA与新兴主题特征分析的新兴主题探测研究[J].情报学报, 2014, 33(7):698-711.
[73] YOON J, PARK H, KIM K. Identifying technological competition trends for R&D planning using dynamic patent maps:SAO-based content analysis[J]. Scientometrics, 2013, 94(1):313-331.
[74] CASCINE G, ZINI M. Measuring patent similarity by comparing inventions functional trees[M]. Boston:Springer, 2008.
[75] 李欣,谢前前,黄鲁成,等.基于SAO结构语义挖掘的新兴技术演化轨迹研究[J].科学学与科学技术管理, 2018, 39(1):17-31.
[76] 黄鲁成,张璐,吴菲菲,等.基于突现文献和SAO相似度的新兴主题识别研究[J].科学学研究, 2016, 34(6):814-821.
[77] POTTENGER W M, YANG T. Detecting emerging concepts in text data mining[M]//BERRY M. Computational information retrieval. Philadelphia:Society for Industrial and Applied Mathematics, 2001:89-105.
[78] KONTOSTATHIS A, GALITSKY L M, POTTENGER W M, et al. A survey of emerging trend detection in textual data mining[A]//Survey of text mining[M]. New York:Springer, 2004:185-224.
[79] BLEI D M, NG A Y, JORDAN M I. Latent dirichlet allocation[J]. Journal of machine learning research, 2003, 3:993-1022.
[80] MIKOLOV T, CHEN K, CORRADO G, et al. Efficient estimation of word representations in vector space[J]. ArXiv preprint arXiv:1301.3781, 2013.
[81] XU S, HAO L, YANG G, et al. A topic models based framework for detecting and forecasting emerging technologies[J]. Technological forecasting and social change, 2021, 162:120366.
[82] LEE C, KWON O, KIM M, et al. Early identification of emerging technologies:a machine learning approach using multiple patent indicators[J]. Technological forecasting and social change, 2018, 127:291-303.
[83] 李欣,温阳,黄鲁成,等.一种基于机器学习的研究前沿识别方法研究[J].科研管理, 2021, 42(1):20-32.
[84] XU S, HAO L, AN X, et al. Emerging research topics detection with multiple machine learning models[J]. Journal of informetrics, 2019, 13(4):100983.
[85] 李静,徐路路,赵素君.基于时间序列分析和SVM模型的基金项目新兴主题趋势预测与可视化研究[J].情报理论与实践, 2019, 42(1):118-123,152.
[86] 岳丽欣,刘自强,胡正银.面向趋势预测的热点主题演化分析方法研究[J].数据分析与知识发现, 2020, 4(6):22-34.
文章导航

/