情报研究

过滤气泡情境下用户行为及其形成机制研究

  • 张庭玮 ,
  • 朱沁雨 ,
  • 宋德凤 ,
  • 陈烨
展开
  • 1 华中师范大学信息管理学院 武汉 430079;
    2 南京大学信息管理学院 南京 210023
张庭玮,本科生;朱沁雨,硕士研究生;宋德凤,本科生。

收稿日期: 2022-08-14

  修回日期: 2022-10-12

  网络出版日期: 2023-02-09

基金资助

本文系国家自然科学基金青年项目“基于多视角学习的社会化问答平台用户画像研究”(项目编号:71904057)研究成果之一。

Research on User Behaviors and their Forming Mechanism under Filter Bubbles

  • Zhang Tingwei ,
  • Zhu Qinyu ,
  • Song Defeng ,
  • Chen Ye
Expand
  • 1 School of Information Management, Central China Normal University, Wuhan 430079;
    2 School of Information Management, Nanjing University, Nanjing 210023

Received date: 2022-08-14

  Revised date: 2022-10-12

  Online published: 2023-02-09

摘要

[目的/意义] 推荐算法技术快速发展所产生的“过滤气泡”现象给用户信息行为带来深刻的影响。从用户角度出发,对其面对过滤气泡时的行为类型以及行为产生的机制进行探索性研究,帮助用户建立对过滤气泡现象的理性认知,为信息服务平台明确推荐算法的建设方向、改进服务水平提供一定的参考。[方法/过程] 采用扎根理论,选取对互联网信息服务平台有一定使用经验的30位用户进行半结构化访谈,并进行编码分析,构建用户面对过滤气泡时的行为与形成机制模型。[结果/结论] 用户面对过滤气泡时的行为类型主要包括忽略行为、缓解行为、加强行为、突破行为以及脱离行为。感知控制、态度和信息需求直接影响用户面对过滤气泡时的行为;推荐算法通过态度以及感知控制的中介作用对行为产生影响;此外,个人特质对行为产生的全过程起到调节作用。对特定情境下用户信息行为的研究以及进一步探究过滤气泡现象提供了一种研究视角和研究基础。

本文引用格式

张庭玮 , 朱沁雨 , 宋德凤 , 陈烨 . 过滤气泡情境下用户行为及其形成机制研究[J]. 图书情报工作, 2023 , 67(2) : 64 -75 . DOI: 10.13266/j.issn.0252-3116.2023.02.007

Abstract

[Purpose/Significance] The "filter bubbles" phenomenon brought about by the rapid development of recommendation algorithm technology may have a profound impact on users' information behaviors. Based on the perspective of users, this study conducts an exploratory study on the types of behaviors and their forming mechanism under filter bubbles, helping users establish a rational cognition of the filter bubbles, providing a certain reference for the information service platform to clarify the construction direction of the recommendation algorithm and improve the service level.[Method/Process] The study selected 30 users who have some experience in using the Internet information service platform to conduct semi-structured interviews, employing grounded theory to proceed code analysis to construct a model of user behaviors and its forming mechanism in face of filter bubbles.[Result/Conclusion] The behavior types of users in face of filter bubbles mainly include ignoring behavior, mitigation behavior, reinforcement behavior, breakthrough behavior and disengagement behavior. Perceived control, attitude and information demand directly affect users' behavior when faced with filter bubbles; recommendation algorithm affect behaviors through the mediating effect of attitude and perceived control; in addition, personal character act as a regulator and affect the overall formation of users' behaviors. This study enriches research content of users' information behaviors under specific contexts and provide a research perspective and a basis for further research on filter bubbles.

参考文献

[1] 人民网.人民网一评算法推荐:不能让算法决定内容[EB/OL].[2022-06-22].http://opinion.people.com.cn/n1/2017/0918/c1003-29540709.html.
[2] 人民网.人民网二评算法推荐:别被算法困在"信息茧房"[EB/OL].[2022-06-22].http://opinion.people.com.cn/n1/2017/0919/c1003-29544724.html.
[3] 人民网.人民网三评算法推荐:警惕算法走向创新的反面[EB/OL].[2022-06-22].http://opinion.people.com.cn/n1/2017/0920/c1003-29545718.html.
[4] 姜婷婷, 许艳闰.国外过滤气泡研究:基础、脉络与展望[J].情报学报, 2021, 40(10):1108-1117.
[5] 姜婷婷, 许艳闰.窄化的信息世界:国外信息茧房、选择性接触与回音室研究进展[J].图书情报知识, 2021, 38(5):134-144.
[6] 王斌, 李宛真.如何戳破"过滤气泡" 算法推送新闻中的认知窄化及其规避[J].新闻与写作, 2018, 411(9):20-26.
[7] 韩志超, 邹吉鹏.智能传播"过滤气泡" 效应对青年价值观建构的风险与应对[J].出版广角, 2021, 395(17):88-90.
[8] 汪青, 李明.从背离到统合:全媒体场域中主流意识形态传播的现实困境与突破路径[J].理论导刊, 2022, 447(2):56-63.
[9] ROSS ARGUEDAS A, ROBERTSON C, FLETCHER R, et al.Echo chambers, filter bubbles, and polarisation:a literature review[M].Oxford:Reuters Institute for the Study of Journalism, 2022.
[10] NECHUSHTAI E, LEWIS S C.What kind of news gatekeepers do we want machines to be? filter bubbles, fragmentation, and the normative dimensions of algorithmic recommendations[J].Computers in human behavior, 2019,90(1):298-307.
[11] KITCHENS B, JOHNSON S L, GRAY P.Understanding echo chambers and filter bubbles:the impact of social media on diversification and partisan shifts in news consumption[J].MIS quarterly, 2020, 44(4):1619-1649.
[12] PRAISER E.The filter bubble:what the internet is hiding from you[M].New York:Penguin, 2011.
[13] SUNSTEIN C R.Infotopia:how many minds produce knowledge[M].Oxford:Oxford University Press, 2006.
[14] CINELLI M, De FRANCISCI MORALES G, GALEAZZI A, et al.The echo chamber effect on social media[J].Proceedings of the National Academy of Sciences, 2021, 118(9):e2023301118.
[15] 王益成, 王萍, 王美月.基于SVM的网络信息茧房层次敏感影响因素识别研究[J].情报资料工作, 2019, 40(6):90-97.
[16] 任秋菊, 赵昕, 韩毅.用户视角下信息茧房的成因分析[J].图书情报工作, 2021, 65(1):120-127.
[17] 张海.网络用户信息茧房形成机制的概念框架研究[J].情报理论与实践, 2021, 44(11):60-64.
[18] 张海.基于扎根理论的网络用户信息茧房形成机制的质性研究[J].情报杂志, 2021, 40(3):168-174.
[19] 王益成, 王萍, 王美月, 等.信息运动视角下内容智能分发平台突破"信息茧房" 策略研究[J].情报理论与实践, 2018, 41(5):114-119.
[20] 许天才, 冯婷婷, 杨新涯.运用零数据破除信息茧房的研究[J].图书与情报, 2020(4):15-20.
[21] 薛永龙, 汝倩倩.遮蔽与解蔽:算法推荐场域中的意识形态危局[J].自然辩证法研究, 2020, 36(1):50-55.
[22] 任莎莎, 田娇.算法新闻的伦理困境及其解决思路——以"今日头条" 为例[J].传媒, 2018, 275(6):89-91.
[23] COURTOIS C, SLECHTEN L, COENEN L.Challenging google search filter bubbles in social and political information:disconforming evidence from a digital methods case study[J].Telematics and informatics, 2018, 35(7):2006-2015.
[24] BERMAN R, KATONA Z.Curation algorithms and filter bubbles in social networks[J].Marketing science, 2020, 39(2):296-316.
[25] BECHMANN A, NIELBO K L.Are we exposed to the same "news" in the news feed?[J].Digital journalism, 2018,6(8):990-1002.
[26] MIKKI S, RUWEHY H A A, GJESDAL Ø L, et al.Filter bubbles in interdisciplinary research:a case study on climate and society[J].Library hi tech, 2018,36(2):225-236.
[27] AYRE L, CRANER J.Algorithms:avoiding the implementation of institutional biases[J].Public library quarterly, 2018,37(3):341-347.
[28] ZIELINSKI K, NIELEK R, WIERZBICKI A, et al.Computing controversy:formal model and algorithms for detecting controversy on Wikipedia and in search queries[J].Information processing & management, 2018, 54(1):14-36.
[29] STRAUß N, ALONSO-MUÑOZ L, GIL DE ZÚÑIGA H.Bursting the filter bubble:the mediating effect of discussion frequency on network heterogeneity[J].Online information review, 2020, 44(6):1161-1181.
[30] YALCIN E, BILGE A.Evaluating unfairness of popularity bias in recommender systems:a comprehensive user-centric analysis[J].Information processing & management, 2022,59(6):103100.
[31] PERRA N, ROCHA L E C.Modelling opinion dynamics in the age of algorithmic personalisation[J].Scientific reports, 2019, 9(1):1-11.
[32] PARISI L, COMUNELLO F.Dating in the time of "relational filter bubbles":exploring imaginaries, perceptions and tactics of Italian dating app users[J].The communication review, 2019,23(1):66-89.
[33] 翟姗姗, 胡畔, 吴璇, 等.基于用户信息行为的新媒体社交平台信息茧房现象及其破茧策略研究——以非遗短视频传播为例[J].情报科学, 2021, 39(10):118-125.
[34] MIN Y, JIANG T J, JIN C, et al.Endogenetic structure of filter bubble in social networks[J].Royal society open science, 2019, 6(11):190868.
[35] CORBIN J, STRAUSS A.Basics of qualitative research:techniques and procedures for developing grounded theory[M].Thousand Oaks:SAGE, 2015.
[36] 陈向明.扎根理论的思路和方法[J].教育研究与实验, 1999(4):58-63, 73.
[37] 孙玉伟, 成颖, 张建军.扎根理论方法论在国内图情领域的应用及其反思[J].图书馆学研究, 2019(19):2-11.
[38] AJZEN I.The theory of planned behavior[J].Organizational behavior and human decision processes, 1991, 50(2):179-211.
[39] 王珉, 侯贵生, 尤志珑.网络用户隐私疲劳的影响因素与行为选择研究——基于S-S-O理论与扎根理论[J].情报理论与实践, 2021, 44(9):149-154.
[40] 安琪, 毕新华.移动网络社群用户团购信息采纳动因——基于信息生态视角的扎根理论分析[J].情报科学, 2021, 39(8):164-172.
[41] 郭庆光.传播学原理[M].北京:中国人民出版社, 1999.
[42] 刘凤军, 段珅, 孟陆, 等.瑕不掩瑜? 在线产品评论负面评语的明亮面——基于双边信息视角研究[J].管理工程学报, 2021, 35(5):89-101.
[43] 罗映宇, 韦志颖, 孙锐.隐私悖论研究述评及未来展望[J].信息资源管理学报, 2020, 10(5):66-75.
[44] EAGLY A H, CHAIKEN S.The psychology of attitudes[M].Orlando:Harcourt Brace Jovanovich College Publishers, 1993.
[45] 段荟, 张海.网络用户信息迷雾成因要素研究[J].情报杂志, 2022, 41(4):160-165.
[46] 胡昌平, 胡潜, 邓胜利.信息服务与用户[M].4版.武汉:武汉大学出版社, 2015.
[47] 娄策群, 段尧清, 杨小溪, 等.信息管理学基础[M].3版.北京:科学出版社, 2021.
[48] 南方都市报.9步才能关掉个性化广告!实测百款App, 多款找不到关闭键[EB/OL].[2022-08-05].https://www.sohu.com/a/567636486_161795.
文章导航

/