[1] BALLA S J, XIE Z. Online consultation and the institutionalization of transparency and participation in Chinese policymaking[J]. The China quarterly, 2020, 246:1-24.
[2] 施国良, 陈宇奇. 文本增强与预训练语言模型在网络问政留言分类中的集成对比研究[J]. 图书情报工作, 2021, 65(13):96-107.
[3] 王灿, 梁霄. 面向武汉市网络问政的文本挖掘研究[J]. 科技视界, 2021, (12):16-18.
[4] MOODYSSON J, ZUKAUSKAITE E. Institutional conditions and innovation systems:on the impact of regional policy on firms in different sectors. Regional studies 2014, 48(1):127-138.
[5] 姚兰, 王晓, 段尧清. 多层级政府回应信息协同网络结构分析[J]. 情报理论与实践, 2021, 44(9):114-121.
[6] 熊小刚, 卢佳佳. 地方人民政府官方微博的聚类分析与评估——以江西省设区市为例[J]. 现代情报, 2016, 36(12):50- 56.
[7] QUILLIAN M R. Semantic memory[J]. Semantic information processing, 1968, 22:227-270.
[8] SINGHAL A. Introducing the knowledge graph:things, not strings[EB/OL].[2022-10-08]. https://search.googleblog.com/2012/05/introducing-knowledge-graph-things-not.html.
[9] SIMMONS R F. Semantic networks:their computation and use for understanding English sentences[M]. Department of computer sciences and computer-assisted instruction laboratory. San Francisco:WH Freeman, 1973.
[10] SZUMLANSKI S, GOMEZ F. Automatically acquiring a semantic network of related concepts[C]//Proceedings of the 19th ACM international conference on information and knowledge management. Toronto:CIKM 2010, 2010:19-28.
[11] SOWA J F. Principles of semantic networks:explorations in the representation of knowledge[M]. Burlington:Morgan Kaufmann, 2014.
[12] IYER H, BUNGO L. An examination of semantic relationships between professionally assigned metadata and user-generated tags for popular literature in complementary and alternative medicine[EB/OL].[2022-10-08]. https://informationr.net/ir/16-3/paper482.html.
[13] 吕鹏辉, 邵建芳, 杨善林. 基于机标关键词的学科语义知识网络构建研究[J]. 图书情报知识, 2017(2):120-128.
[14] SZUMLANSKI S, GOMEZ F. Automatically acquiring a semantic network of related concepts[C]//Proceedings of the 19th ACM international conference on information and knowledge management. New York:ACM, 2010:19-28.
[15] 张军亮, 方雪梅, 张帆, 等. 基于复杂网络的医学语义关联研究[J]. 数据分析与知识发现, 2022, 6(9):125-137.
[16] 陈翔, 黄璐, 倪兴兴, 等. 基于动态语义网络分析的主题演化路径识别研究[J]. 情报学报, 2021, 40(5):500-512.
[17] 谭荧, 张进, 夏立新. 语义网络发展历程与现状研究[J]. 图书情报知识, 2019, (6):102-110.
[18] 荣国阳, 李长玲, 范晴晴, 等. 主题热度加速度指数——学科研究热点识别新方法[J]. 图书情报工作, 2021, 65(20):59- 67.
[19] WATTS R J, PORTER A L. Innovation forecasting[J]. Technological forecasting & focial change, 1997, 56(1):25-47.
[20] DONG K, XU H, LUO R, et al. An integrated method for interdisciplinary topic identification and prediction:a case study on information science and library science[J]. Scientometrics, 2018, 115(2):849-868.
[21] SCHIEBEL E, HORLESBERGER M, ROCHE I, et al. An advanced diffusion model to identify emergent research issues:the case of optoelectronic devices[J]. Scientometrics, 2010, 83(3):765-781.
[22] 杨学磊, 李卫宁, 尚航标. 基于文献计量的家族企业传承研究现状和主题识别分析[J]. 管理学报, 2021, 18(2):306-316.
[23] 吴健, 李子运, 王洪梅. 基于关键词共现聚类的深阅读研究热点分析[J]. 图书馆建设, 2016, (12):53-59.
[24] 谌志群, 徐宁, 王荣波. 基于主题演化图的网络论坛热点跟踪[J]. 情报科学, 2013, 31(3):147-150.
[25] 奉国和, 孔泳欣. 基于时间加权关键词词频分析的学科热点研究[J]. 情报学报, 2020, 39(1):100-110.
[26] 刘自强, 王效岳, 白如江. 基于时间序列模型的研究热点分析预测方法研究[J]. 情报理论与实践, 2016, 39(5):27-33.
[27] 李静, 徐路路, 赵素君. 基于时间序列分析和SVM模型的基金项目新兴主题趋势预测与可视化研究[J]. 情报理论与实践, 2019, 42(1):118-123, 152.
[28] HAN X. Evolution of research topics in LIS between 1996 and 2019:an analysis based on latent dirichlet allocation topic model[J]. Scientometrics, 2020, 125(3):2561-2595.
[29] 余传明, 张小青, 陈雷. 基于LDA模型的评论热点挖掘:原理与实现[J]. 情报理论与实践, 2010, 33(5):103-106.
[30] 唐晓波, 向坤. 基于LDA模型和微博热度的热点挖掘[J]. 图书情报工作, 2014, 58(5):58-63.
[31] 许海云, 董坤, 刘春江, 等. 文本主题识别关键技术研究综述[J]. 情报科学, 2017, 35(1):153-160.
[32] REN H, LIAO X, LI Z, et al. Anomaly detection using piecewise aggregate approximation in the amplitude domain[J]. Applied intelligence, 2018, 48(5):1097-1110.
[33] HU K, LUO Q, QI K, et al. Understanding the topic evolution of scientific literatures like an evolving city:using google Word2Vec model and spatial autocorrelation analysis[J]. Information processing & management, 2019, 56(4):1185-1203.
[34] JAIN P, LAPATA M. Memory-based semantic parsing[J]. Transactions of the association for computational linguistics, 2021(9):1197-1212.
[35] 滕婕, 胡广伟, 王婷. 基于动态语义依赖关系网的社会诉求主题识别与演化路径分析[J]. 情报资料工作, 2022, 43(3):20- 33.
[36] LIU D, CHEN X, PENG D. The intuitionistic fuzzy linguistic cosine similarity measure and its application in pattern recognition[J/OL]. Complexity, 2018[2022-10-27]. https://doi.org/10.1155/2018/9073597.
[37] MITTAL R, BHATIA M. Classification and comparative evaluation of community detection algorithms[J]. Archives of computational methods in engineering, 2020, 28(3):1417-1428.
[38] 孙佳佳, 李雅静. 基于关键词价值细分的高价值热点主题识别方法研究[J]. 情报学报, 2022, 41(2):118-129.
[39] HUGHES A M. Strategic database marketing:the masterplan for starting and managing a profitable, customer-based marketing program[M]. New York:McGraw-Hill, 2000.
[40] LEE B, JEONG Y I. Mapping korea's national R&D domain of robot technology by using the co-word analysis[J]. Scientometrics, 2008, 77(1):3-19.
[41] 张嶷, 汪雪锋, 朱东华, 等."主题词簇"方法研究——英文科技文献主题词清洗、合并与聚类[J]. 科学学研究, 2013, 31(11):1615-1622.
[42] DAOUADI K E, REBA R Z, AMOUS I. Optimizing semantic deep forest for tweet topic classification[J]. Information systems, 2021, 101(2):101801-101811.
[43] 万校基, 李海林, 龚燕燕, 等. 基于天际线算法的主题排序方法研究[J]. 情报学报, 2022, 41(4):388-400.
[44] LIU F, ZOU S C, LI Q. Deriving priorities from pairwise comparison matrices with a novel consistency index[J]. Applied mathematics and computation, 2020, 374:125059-125075.
[45] 袁逸铭, 刘宏志, 李海生. 基于密度峰值的改进K-Means文本聚类算法及其并行化[J]. 武汉大学学报(理学版), 2019, 65(5):457-464.