[1] PATEK A. Diagnostic misinformation at a health resort[J]. Journal of the American Medical Association, 1912, 59(22):1990-1991.
[2] GLASER F. Misinformation about drugs:a problem for drug abuse education[J]. International journal of the addictions, 1970, 5(4):595-609.
[3] BINGER C. Medical information and misinformation[J]. Mental hygiene, 1947, 31(1):1-13.
[4] HUENEMANN R. Combating food misinformation and quackery[J]. Journal of the American Dietetic Association, 1956, 32(7):623-626.
[5] CHANG S K. A model for information exchange. revision[R]. Fort Belvoir:Defense Technical Information Center, 1981.
[6] EBBINGHOUSE C. Medical and legal misinformation on the internet[J]. Searcher, 2000, 8(9):18-27.
[7] MORAHAN-MARTIN J, ANDERSON C. Information and misinformation online:recommendations for facilitating accurate mental health information retrieval and evaluation[J]. Cyberpsychology & behavior, 2000, 3(5):731-746.
[8] ZAROCOSTAS J. How to fight an infodemic[J]. The lancet, 2020, 395(10225):676.
[9] 邓胜利, 孙瑾杰. 图书馆参与虚假健康信息治理的价值、阻滞因素和实现路径[J]. 图书情报工作, 2022, 66(9):14-22.
[10] CALERO VALDEZ A. Human and algorithmic contributions to misinformation online-identifying the culprit[C]//GRIMME C, PREUSS M, TAKES F, et al. Disinformation in open online media. Cham:Springer, 2020:3-15.
[11] 彭知辉. 论中国语境下Disinformation概念的对接、转换与重新阐释[J]. 情报理论与实践, 2022, 45(1):1-10.
[12] 钟义信. 自然语言理解的全信息方法论[J]. 北京邮电大学学报, 2004, 27(4):1-12.
[13] 宋士杰, 赵宇翔, 宋小康, 等. 互联网环境下失真健康信息可信度判断的影响因素研究[J]. 中国图书馆学报, 2019, 45(4):72-85.
[14] 闫慧, 刘畅, 张鹏翼, 等. 信息疫情:信息科学家的观点与对策[J]. 图书情报知识, 2021, 38(1):136-143.
[15] LAZER D, BAUM M, BENKLER Y, et al. The science of fake news[J]. Science, 2018, 359(6380):1094-1096.
[16] DIFONZO N, BORDIA P. Rumor psychology:social and organizational approaches[M]. Washington, DC:American psychological association, 2007.
[17] WORLD HEALTH ORGANIZATION. Novel Coronavirus(2019- nCoV) situation report-13[EB/OL].[2022-07-15]. https://www.who.int/docs/default-source/coronaviruse/situationreports/20200202-sitrep-13-ncov-v3.pdf.
[18] ANDRADE G. Medical conspiracy theories:cognitive science and implications for ethics[J]. Medicine, health care and philosophy, 2020, 23(3):505-518.
[19] ISLAM M S, KAMAL A, KABIR A, et al. COVID-19 vaccine rumors and conspiracy theories:the need for cognitive inoculation against misinformation to improve vaccine adherence[EB/OL].[2022-07-16]. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0251605.
[20] CAO X, SUN J. Exploring the effect of overload on the discontinuous intention of social media users:an SOR perspective[EB/OL].[2022-07-16]. https://www.sciencedirect.com/science/article/abs/pii/S0747563217306738.
[21] MEHRABIAN A, RUSSELL J. An approach to environmental psychology[M]. Cambridge:MIT Press, 1974.
[22] WANG W, CHEN R, OU C, et al. Media or message, which is the king in social commerce? an empirical study of participants' intention to repost marketing messages on social media[EB/OL].[2022-07-16]. https://www.sciencedirect.com/science/article/abs/pii/S0747563218305934.
[23] WU Y, LI E. Marketing mix, customer value, and customer loyalty in social commerce:a stimulus-organism-response perspective[J]. Internet research, 2018, 28(1):74-104.
[24] EROGLU S, MACHLEIT K, DAVIS L. Atmospheric qualities of online retailing:a conceptual model and implications[J]. Journal of business research, 2001, 54(2):177-184.
[25] KIM A, JOHNSON K. Power of consumers using social media:examining the influences of brand-related user-generated content on Facebook[EB/OL].[2022-07-16]. https://www.sciencedirect.com/science/article/abs/pii/S0747563215303186.
[26] DALEY D, KENDALL D. Epidemics and rumours[J]. Nature, 1964, 204(4963):1118.
[27] 陈安, 王子君, 陈樱花. 基于SEIR模型视角的重大公共卫生事件中伪科学网络谣言的传播治理:以新冠肺炎疫情为例[J]. 科技导报, 2020, 38(4):55-65.
[28] 刘倩倩. 不确定环境下的SEIR谣言传播模型及其扩展研究[D]. 乌鲁木齐:新疆大学, 2021.
[29] HAN Q, MIAO F, FAN W. Rumor spreading and monitoring deployment in online social networks[C]//2017 IEEE 17th International conference on communication technology (ICCT). Piscataway:IEEE, 2017:1347-1351.
[30] 阮智慧, 钱爱兵. 突发公共卫生事件中伪健康信息传播的系统动力学模型研究[J]. 医学信息学杂志, 2022, 43(3):18-24.
[31] ZHAO L, WANG J, CHEN Y, et al. SIHR rumor spreading model in social networks[J]. Physica a:statistical mechanics and its applications, 2012, 391(7):2444-2453.
[32] KAUK J, KREYSA H, SCHWEINBERGER S. Understanding and countering the spread of conspiracy theories in social networks:evidence from epidemiological models of twitter data[EB/OL].[2022-07-16]. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0256179.
[33] D'ANDREA V, ARTIME O, CASTALDO N, et al. Epidemic proximity and imitation dynamics drive infodemic waves during the COVID-19 pandemic[EB/OL].[2022-07-18]. https://journals.aps.org/prresearch/abstract/10.1103/PhysRevResearch.4.013158.
[34] 王显芳, 张亮, 张宁. 基于前景理论的微信健康信息质量三方博弈分析[J]. 计算机科学, 2022, 49(S1):694-704.
[35] LIN Y, LEI H, DENG Y. Spread mechanism and influence measurement of online rumors in China during the COVID-19 pandemic[EB/OL].[2022-07-18]. https://arxiv.org/abs/2012.02446.
[36] GRIMES D. Medical disinformation and the unviable nature of COVID-19 conspiracy theories[EB/OL].[2022-07-18]. https://journals.plos.org/plosone/article?id=10.1371/journal. pone.0245900.
[37] INDU V, THAMPI S. A nature-inspired approach based on forest fire model for modeling rumor propagation in social networks[EB/OL].[2022-07-20]. https://www.sciencedirect.com/science/article/abs/pii/S108480451830314X.
[38] AHMED W, VIDAL-ALABALL J, DOWNING J, et al. COVID-19 and the 5G conspiracy theory:social network analysis of Twitter data[EB/OL].[2022-07-20]. https://www.jmir.org/2020/5/e19458.
[39] CHEN E, LERMAN K, FERRARA E. Tracking social media discourse about the COVID-19 pandemic:development of a public coronavirus twitter data set[EB/OL].[2022-07-22]. https://publichealth.jmir.org/2020/2/e19273.
[40] SAFARNEJAD L, XU Q, GE Y, et al. Disinformed social movements and real-information dissemination network structures on social media during a health emergency[J]. American journal of public health, 2020, 110(S3):340-347.
[41] DARIUS P, STEPHANY F. How the far-right polarises Twitter:'highjacking' hashtags in times of COVID-19[EB/OL].[2022-07-22]. https://arxiv.org/abs/2010.05686.
[42] SHAHI G K, DIRKSON A, MAJCHRZAK T. An exploratory study of COVID-19 misinformation on Twitter[EB/OL].[2022- 07-22]. https://www.sciencedirect.com/science/article/pii/S2468696420300458.
[43] NAZAR S, PIETERS T. Plandemic revisited:a product of planned disinformation amplifying the COVID-19"infodemic"[EB/OL].[2022-07-22]. https://www.frontiersin.org/articles/10.3389/fpubh.2021.649930/full.
[44] JEMIELNIAK D, KREMPOVYCH Y. An analysis of AstraZeneca COVID-19 vaccine misinformation and fear mongering on Twitter[EB/OL].[2022-07-23]. https://www.sciencedirect.com/science/article/pii/S0033350621003462.
[45] CHENG M, YIN C, NAZARIAN S, et al. Deciphering the laws of social network-transcendent COVID-19 misinformation dynamics and implications for combating misinformation phenomena[J]. Scientific reports, 2021, 11(1):1-14.
[46] KALANTARI N, LIAO D, MOTTI V. Characterizing the online discourse in Twitter:Users' reaction to misinformation around COVID-19 in Twitter[C]//CHEN Y, LUDWIG H, TU Y, et al. 2021 IEEE International conference on big data (big data). Piscataway:IEEE, 2021:4371-4380.
[47] 王林, 张梦溪, 吴江. 信息生态视角下新冠肺炎疫情的网络舆情传播与演化分析研究[J]. 情报科学, 2022, 40(1):31-37, 50.
[48] RÖCHERT D, SHAHI G, NEUBAUM G, et al. The networked context of COVID-19 misinformation:informational homogeneity on YouTube at the beginning of the pandemic[EB/OL].[2022-07-24]. https://www.sciencedirect.com/science/article/pii/S246869642100046X.
[49] WANG A, LAN J-Y, WANG M-H, et al. The evolution of rumors on a closed social networking platform during COVID-19:algorithm development and content study[EB/OL].[2022-07-24]. https://pubmed.ncbi.nlm.nih.gov/34623954.
[50] DARIUS P, URQUHART M. Disinformed social movements:a large-scale mapping of conspiracy narratives as online harms during the COVID-19 pandemic[EB/OL].[2022-07-24]. https://pubmed.ncbi.nlm.nih.gov/34642647.
[51] MURCHISON C. A history of psychology in autobiography vol.i[M]. Whitefish, MT:Russell & Russell/Atheneum Publishers, 1930.
[52] HAN J W, PARK J H, LEE H N. Effect of exposure to COVID-19 infodemic on infection-preventive intentions among Korean adults[J]. Nursing open, 2022, 9(6):2665-2674.
[53] CHEN L, ZHANG Y, YOUNG R, et al. Effects of vaccine-related conspiracy theories on Chinese young adults' perceptions of the HPV vaccine:an experimental study[J]. Health communication, 2021, 36(11):1343-1353.
[54] ZHOU C, XIU H, WANG Y, et al. Characterizing the dissemination of misinformation on social media in health emergencies:an empirical study based on COVID-19[J]. Information processing & management, 2021, 58(4):102554.
[55] TANDOC J R, LEE J. When viruses and misinformation spread:how young Singaporeans navigated uncertainty in the early stages of the COVID-19 outbreak[J]. New media & society, 2022, 24(3):778-796.
[56] VRDELJA M, VRBOVŠEK S, KLOPČIČ V, et al. Facing the growing COVID-19 infodemic:digital health literacy and information-seeking behaviour of university students in Slovenia[EB/OL].[2022-07-24]. https://www.mdpi.com/1660-4601/18/16/8507.
[57] DING X, ZHANG X, FAN R, et al. Rumor recognition behavior of social media users in emergencies[J]. Journal of management science and engineering, 2022, 7(1):36-47.
[58] 王宁, 李月琳, 牛志鹏, 等. 健康信息规避行为与维持性血液透析患者自我健康管理研究[J]. 情报科学, 2022, 40(9):78-87.
[59] KIM SY, KIM S H. The crisis of public health and infodemic:analyzing belief structure of fake news about COVID-19 pandemic[J]. Sustainability, 2020, 12(23):9904.
[60] HOULDEN S, HODSON J, VELETSIANOS G, et al. The health belief model:how public health can address the misinformation crisis beyond COVID-19[EB/OL].[2022-07-28]. https://www.sciencedirect.com/science/article/pii/S2666535221000768.
[61] EBERHARDT J, LING J. Predicting COVID-19 vaccination intention using protection motivation theory and conspiracy beliefs[J]. Vaccine, 2021, 39(42):6269-6275.
[62] HE L, CHEN Y, XIONG X, et al. Does science literacy guarantee resistance to health rumors? the moderating effect of self-efficacy of science literacy in the relationship between science literacy and rumor belief[EB/OL].[2022-07-28]. https://www.mdpi.com/1660-4601/18/5/2243.
[63] LIU P L, HUANG L. Digital disinformation about COVID-19 and the third-person effect:examining the channel differences and negative emotional outcomes[J]. Cyberpsychology, behavior, and social networking, 2020, 23(11):789-793.
[64] HUSAIN F, SHAHNAWAZ M, KHAN N, et al. Intention to get COVID-19 vaccines:Exploring the role of attitudes, subjective norms, perceived behavioral control, belief in COVID-19 misinformation, and vaccine confidence in Northern India[J]. Human vaccines & immunotherapeutics, 2021, 17(11):3941-3953.
[65] SCANNELL D, DESENS L, GUADAGNO M, et al. COVID-19 vaccine discourse on Twitter:a content analysis of persuasion techniques, sentiment and mis/disinformation[J]. Journal of health communication, 2021, 26(7):443-459.
[66] WOLFE C, EYLEM A, DANDIGNAC M, et al. Understanding the landscape of web-based medical misinformation about vaccination[EB/OL].[2022-07-31]. https://link.springer.com/article/10.3758/s13428-022-01840-5.
[67] 梁晨, 刘紫英. 事实核查与横向阅读:网络谣言治理的新思路[J]. 新媒体研究, 2022, 8(7):39-41, 73.
[68] STEWART E. Detecting fake news:two problems for content moderation[J]. Philosophy & technology, 2021, 34(4):923-940.
[69] ROITERO K, SOPRANO M, PORTELLI B, etal. The COVID-19 infodemic:can the crowd judge recent misinformation objectively?[C]//D'AQUIN M, DIETZE S, HAUFF C, et al. Proceedings of the 29th ACM international conference on information & knowledge management. New York:ACM, 2020:1305-1314.
[70] ARMITAGE L, LAWSON B, WHELAN M, et al. Paying SPECIAL consideration to the digital sharing of information during the COVID-19 pandemic and beyond[EB/OL].[2022- 07-31]. https://bjgpopen.org/content/4/2/bjgpopen20x101072. abstract.
[71] LÓPEZ-GARCÍA X, COSTA-SÁNCHEZ C, VIZOSO Á. Journalistic fact-checking of information in pandemic:stakeholders, hoaxes, and strategies to fight disinformation during the COVID-19 crisis in Spain[EB/OL].[2022-08-01]. https://www.mdpi.com/1660-4601/18/3/1227.
[72] COTTER K, DECOOK J, KANTHAWALA S. Fact-checking the crisis:COVID-19, infodemics, and the platformization of truth[EB/OL].[2022-08-01]. https://journals.sagepub.com/doi/pdf/10.1177/20563051211069048.
[73] CHOU W Y, GAYSYNSKY A, VANDERPOOL R. The COVID-19 misinfodemic:moving beyond fact-checking[J]. Health education & behavior, 2021, 48(1):9-13.
[74] NYHAN B, REIFLER J. When corrections fail:The persistence of political misperceptions[J]. Political behavior, 2010, 32(2):303-330.
[75] BODE L, VRAGA E. In related news, that was wrong:the correction of misinformation through related stories functionality in social media[J]. Journal of communication, 2015, 65(4):619-638.
[76] MOHDEB D, LAIFA M, NAIDJA M. An Arabic corpus for COVID-19 related fake news[C]//2021 International conference on recent advances in mathematics and informatics (ICRAMI). Piscataway:IEEE, 2021:1-5.
[77] MURIC G, WU Y, FERRARA E. COVID-19 vaccine hesitancy on social media:building a public twitter data set of antivaccine content, vaccine misinformation, and conspiracies[EB/OL].[2022-08-01]. https://publichealth.jmir.org/2021/11/e30642.
[78] SAFARNEJAD L, XU Q, GE Y, et al. A multiple feature category data mining and machine learning approach to characterize and detect health misinformation on social media[J]. IEEE Internet computing, 2021, 25(5):43-51.
[79] ANOOP K, DEEPAK P, LAJISH V. Emotion cognizance improves health fake news identification[C]//DESAI B, CHO W-S. 24th international database engineering & applications symposium. New York:ACM, 2020:1-10.
[80] ZHAO Y, DA J, YAN J. Detecting health misinformation in online health communities:incorporating behavioral features into machine learning based approaches[EB/OL].[2022-08- 02]. https://www.sciencedirect.com/science/article/abs/pii/S0306457320308852.
[81] RAJU R, BHANDARI S, MOHAMUD S, et al. Transfer learning model for disrupting misinformation during a COVID-19 pandemic[C]//2021 IEEE 11th annual computing and communication workshop and conference (CCWC). Piscataway:IEEE, 2021:245-250.
[82] SICILIA R, FRANCINI L, SODA P. Representation and knowledge transfer for health-related rumour detection[C]//2021 IEEE 34th International symposium on computer-based medical systems (CBMS). Piscataway:IEEE, 2021:591-596.
[83] 张帅. 社交媒体虚假健康信息特征识别[J]. 图书情报工作, 2021, 65(9):70-78.
[84] WANG X, CHAO F, YU G, et al. Factors influencing fake news rebuttal acceptance during the COVID-19 pandemic and the moderating effect of cognitive ability[EB/OL].[2022- 08-02]. https://www.sciencedirect.com/science/article/pii/S0747563221004970.
[85] MALLA S, ALPHONSE P. Fake or realnews about COVID-19? pretrained transformer model to detect potential misleading news[EB/OL].[2022-08-02]. https://link.springer.com/article/10.1140/epjs/s11734-022-00436-6?utm_campaign=HSCR_JRNLS_AWA1_GL_MPAS_TRDMD&utm_term=null&utm_content=paid&utm_source=trendmd&utm_medium=cpc.
[86] PRANESH R, FAROKHNEJAD M, SHEKHAR A, et al. CMTA:COVID-19 misinformation multilingual analysis on Twitter[C]//KABBARA J, LIN H, PAULLADA A, et al. Proceedings of the 59th annual meeting of the association for computational linguistics and the 11th international joint conference on natural language processing:student research workshop. Stroudsburg:ACL, 2021:270-283.
[87] DU J, PRESTON S, SUN H, et al. Using machine learning- based approaches for the detection and classification of human papillomavirus vaccine misinformation:infodemiology study of reddit discussions[EB/OL].[2022-08-03]. https://www.jmir.org/2021/8/e26478.
[88] NAKOV P, ALAM F, SHAAR S, et al. A second pandemic? analysis of fake news about COVID-19 vaccines in Qatar[EB/OL].[2022-08-03]. https://arxiv.org/abs/2109.11372.
[89] MAHLOUS A R, AL-LAITH A. Fake news detection in Arabic tweets during the COVID-19 pandemic[EB/OL].[2022-08-03]. https://www.researchgate.net/profile/AliAl-Laith/publication/353068250_Fake_News_Detection_in_Arabic_Tweets_during_the_COVID-19_Pandemic/links/60e67ff10fbf460db8edbd66/Fake-News-Detection-inArabic-Tweets-during-the-COVID-19-Pandemic.pdf.
[90] BARVE Y, SAINI J. Healthcare misinformation detection and fact-checking:a novel approach[EB/OL].[2022-08- 03]. https://www.researchgate.net/profile/JatinderkumarSaini/publication/356013604_Healthcare_Misinformation_Detection_and_Fact-Checking_A_Novel_Approach/links/61c9a3cdd4500608166e8509/Healthcare-MisinformationDetection-and-Fact-Checking-A-Novel-Approach.pdf.
[91] TASHTOUSH Y, ALRABABAH B, DARWISH O, et al. A deep learning framework for detection of COVID-19 fake news on social media platforms[EB/OL].[2022-08-04]. https://www. mdpi.com/2306-5729/7/5/65.
[92] AL-SAREM M, ALSAEEDI A, SAEED F, et al. A novel hybrid deep learning model for detecting COVID-19-related rumors on social media based on LSTM and concatenated parallel CNNs[EB/OL].[2022-08-04]. https://www.mdpi.com/2076-3417/11/17/7940.
[93] DU J, DOU Y, XIA C, et al. Cross-lingual COVID-19 fake news detection[C]//2021 International conference on data mining workshops (ICDMW). Piscataway:IEEE, 2021:859-862.
[94] IWENDI C, MOHAN S, IBEKE E, et al. COVID-19 fake news sentiment analysis[EB/OL].[2022-08-04]. https://www.sciencedirect.com/science/article/pii/S0045790622002439.
[95] FERNÁNDEZ-PICHEL M, LOSADA D, PICHEL J, et al. Comparing traditional and neural approaches for detecting health-related misinformation[C]//Experimental IR meets multilinguality, multimodality, and interaction. CLEF 2021. lecture notes in computer science. Cham:Springer, 2021:78-90.
[96] HONG K, PARK N, HEO S, et al. Effect of e-health literacy on COVID-19 infection-preventive behaviors of undergraduate students majoring in healthcare[EB/OL].[2022-08-03]. https://www.mdpi.com/2227-9032/9/5/573.
[97] HUI H, ZHOU C, LÜ X, et al. Spread mechanism and control strategy of social network rumors under the influence of COVID- 19[J]. Nonlinear dynamics, 2020, 101(3):1933-1949.
[98] LIU T, XIAO X. A framework of AI-based approaches to improving ehealth literacy and combating infodemic[EB/OL].[2022-08-04]. https://www.frontiersin.org/articles/10.3389/fpubh.2021.755808/full.
[99] 黄如花. 从重大突发公共卫生事件的应对谈信息素养教 育的 迫切 性[EB/OL].[2022-07-15]. http://m.people.cn/n4/2020/0302/c655-13739587.html.
[100] WALTER N, BROOKS J, SAUCIER C, et al. Evaluating the impact of attempts to correct health misinformation on social media:a metaanalysis[J]. Health communication, 2021, 36(13):1776-1784.
[101] YOUSUF H, VAN DER LINDEN S, BREDIUS L, et al. A media intervention applying debunking versus non-debunking content to combat vaccine misinformation in elderly in the Netherlands:a digital randomised trial[EB/OL].[2022-08-05]. https://www.sciencedirect.com/science/article/pii/S2589537021001619.
[102] WANG Y. Debunking misinformation about genetically modified food safety on social media:can heuristic cues mitigate biased assimilation?[J]. Science communication, 2021, 43(4):460-485.
[103] ROITERO K, SOPRANO M, PORTELLI B, et al. The COVID-19 infodemic:can the crowd judge recent misinformation objectively?[C]//D'AQUIN M, DIETZE S, HAUFF C, et al. Proceedings of the 29th ACM international conference on information & knowledge management. New York:ACM, 2020:1305-1314.
[104] VIJAYKUMAR S, ROGERSON D, JIN Y, et al. Dynamics of social corrections to peers sharing COVID-19 misinformation on WhatsApp in Brazil[J]. Journal of the American Medical Informatics Association, 2022, 29(1):33-42.
[105] TEODORO D, FERDOWSI S, BORISSOV N, et al. Information retrieval in an infodemic:the case of COVID-19 publications[EB/OL].[2022-08-05]. https://www.jmir.org/2021/9/e30161.
[106] FRÖBE M, GÜNTHER S, BONDARENKO A, et al. Using keyqueries to reduce misinformation in health-related search results[EB/OL].[2022-08-05]. https://webis.de/downloads/publications/papers/froebe_2022c.pdf.
[107] 宋士杰, 赵宇翔, 朱庆华.iField视域下的信息可信度研究:概念溯源、主题演化与未来展望[J]. 中国图书馆学报, 2022, 48(1):107-126.