工作研究

基于认知升级理论的高校图书馆智慧推荐服务研究

  • 杜丰瑞 ,
  • 岳铁骐 ,
  • 张彤阳 ,
  • 徐健
展开
  • 中山大学信息管理学院 广州 510006
杜丰瑞,硕士研究生;岳铁骐,硕士研究生;张彤阳,博士研究生。

收稿日期: 2022-11-30

  修回日期: 2023-02-06

  网络出版日期: 2023-07-06

基金资助

本文系国家社会科学基金面上项目“基于知识发现的科研人员老龄化现象、演化规律及成因分析”(项目编号: 18BTQ076)研究成果之一。

Research on Intelligent Recommendation Service of University Libraries Based on Cognitive Upgrading Theory

  • Du Fengrui ,
  • Yue Tieqi ,
  • Zhang Tongyang ,
  • Xu Jian
Expand
  • School of Information Management, Sun Yat-sen University, Guangzhou 510006

Received date: 2022-11-30

  Revised date: 2023-02-06

  Online published: 2023-07-06

摘要

[目的/意义] 将认知升级理论融入图书馆智慧推荐服务中,以实现知以藏往、见贤思齐的智慧化推荐服务。 [方法/过程] 首先,从兴趣热度、内容质量评价和专指度 3 个指标入手,构建图书馆智慧推荐系统的指标体系;其次,基于认知升级理论,将用户分为“前辈”和“后辈”,通过改进协同过滤推荐算法计算用户相似度,将“前辈”的成功学习路径推荐给相似的后辈;最后,利用精准率、召回率、 AUC、 MMR、 F1 值等指标对离线实验和在线实验结果进行检验。 [结果/结论] 实验结果表明,改进后的智慧推荐算法相比传统协同过滤算法的实现效果有明显提高;对比离线实验和在线实验结果发现,在线实验的推荐效果显著提升,意味着若将基于认知升级理论的智慧推荐服务加以推广,将会对高校学生的专业素质培养和认知层次升级产生积极影响。

本文引用格式

杜丰瑞 , 岳铁骐 , 张彤阳 , 徐健 . 基于认知升级理论的高校图书馆智慧推荐服务研究[J]. 图书情报工作, 2023 , 67(12) : 39 -49 . DOI: 10.13266/j.issn.0252-3116.2023.12.004

Abstract

[Purpose/Significance] This study proposes to integrate the theory of cognitive upgrading into the intelligent recommendation service of the library, so as to realize the intelligent recommendation service of knowing to accumulate learning experience from others. [Method/Process] Firstly, this study constructed an indicator system of the intelligent recommendation system of the library from three dimensions: interest heat, content quality evaluation and specificity; Secondly, users were divided into ‘predecessors’ and ‘descendants’ based on cognitive upgrading theory. The user similarity was calculated by improving the collaborative filtering recommendation algorithm, and the successful learning path of ‘predecessors’ was recommended to similar ‘descendants’; Finally, the offline experiment and online experiment results were tested by using accuracy, recall, AUC, MMR, F1 value and other indicators. [Result/Conclusion] The experimental results show that the implementation effect of the improved intelligent recommendation algorithm is significantly improved compared with the traditional collaborative filtering algorithm. Especially, the comparison between offline experiment and online experiment shows that the online experiment has a remarkable recommendation effect. Our results indicate that if the intelligent recommendation algorithm based on the cognitive upgrading theory is promoted, it will have a positive impact on the professional quality training and cognitive level upgrading of students in the college scene.

参考文献

[1] 黄力.基于物联网技术的图书馆服务模式与内容的研究[J].图书馆学研究, 2011(6):51-55.
[2] 严栋.基于物联网的智慧图书馆[J].图书馆学刊, 2010, 32(7):8-10.
[3] 刘煦赞.我国智慧图书馆研究述评与思考[J].图书馆理论与实践, 2015(5):32-36.
[4] 乌恩.智慧图书馆及其服务模式的构建[J].情报资料工作, 2012(5):102-104.
[5] 陈至立.辞海[M].上海:上海辞书出版社, 2021.
[6] 王子舟.知识集合初论——对图书馆学研究对象的探索[J].中国图书馆学报, 2000, 26(4):7-12.
[7] 许正兴.融通之智与超越之慧——智慧服务背景下图书馆学五定律的传统文化诠释与后现代反思[J].情报科学, 2018, 36(4):10-13, 159.
[8] 柳益君,何胜,熊太纯,等.大数据挖掘视角下的图书馆智慧服务——模型、技术和服务[J].现代情报, 2017, 37(11):81-86.
[9] PAN Y. Important developments for the digital library:data ocean and smart library[J]. Journal of Zhejiang University-Science C, 2010, 11(11):835-836.
[10] 李民.基于智慧推荐的高校智慧图书馆服务模式研究[D].天津:天津理工大学, 2017.
[11] 王颖纯,贺新乾,刘燕权.图书馆智慧服务模式推进路径研究[J].图书馆工作与研究, 2018(1):12-17.
[12] SOHAIL S, SIDDIQUI J, ALI R. Book recommendation system using opinion mining technique[C]//International conference on advances in computing, communications and informatics. India:IEEE, 2013:1609-1614.
[13] 任萍萍. 5G技术驱动下的智慧图书馆应用场景与智慧平台模型构建[J].情报理论与实践, 2020, 43(7):95-102.
[14] 董同强,马秀峰.融入"双一流"建设的高校图书馆智慧型学科服务平台构建[J].现代情报, 2019, 39(5):97-103.
[15] 曾子明,宋扬扬.面向读者的智慧图书馆嵌入式知识服务探析[J].图书馆, 2017(3):84-89, 100.
[16] 胡莲香.走向大数据知识服务:大数据时代图书馆服务模式创新[J].农业图书情报学刊, 2014, 26(2):173-177.
[17] 尹克勤,张立新.基于智慧图书馆的高校图书馆读者服务模式研究[J].图书馆工作与研究, 2017(9):109-113.
[18] 李朝晖,陈迪新.基于众创的高校图书馆智慧服务模式研究[J].图书馆工作与研究, 2017(7):57-62.
[19] 王维秋,刘春丽.基于人脸识别技术的我国图书馆智慧服务功能设计与模式构建[J].图书馆学研究, 2018(18):44-50.
[20] 洪亮,周莉娜,陈珑绮.大数据驱动的图书馆智慧信息服务体系构建研究[J].图书与情报, 2018(2):8-15, 23.
[21] 韩业江,董颖,方敏,等.基于情境感知技术的智慧图书馆服务策略研究[J].情报科学, 2019, 37(8):87-91.
[22] 刘煦赞.国内智慧图书馆研究综述[C]//福建省图书馆学会2014年学术年会暨著名图书馆学家-金云铭先生诞辰110周年学术研讨会论文集.霞浦:福建省科学技术协会,福建省图书馆学会, 2014:88-93.
[23] 邵波,单轸,王怡.新一代服务平台环境下的智慧图书馆建设:业务重组与数据管理[J].中国图书馆学报, 2020, 46(2):27-37.
[24] 邵波,张文竹.下一代图书馆系统平台的实践与思考[J].图书情报工作, 2019, 63(1):98-104.
[25] CAO G, LIANG M, LI X. How to make the library smart?The conceptualization of the smart library[J]. Electronic library, 2018, 36(5):811-825.
[26] 邓李君,杨文建.基于用户满意视角的智慧图书馆评价体系研究[J].图书馆学研究, 2020(3):18-25.
[27] 孟华.国外图书馆协助智慧城市发展理论及实践研究——基于ALIA图书馆协助智慧城市发展10大路径的思考[J].图书馆工作与研究, 2017(10):5-10.
[28] 晁亚男,胡莹.智慧城市背景下国外公共图书馆发展现状研究——以新加坡、澳大利亚、加拿大三国为例[J].国家图书馆学刊, 2021, 30(4):86-98.
[29] CARAGLIU A, BO C, NIKAMP P. Smart cities in Europe[J]. Journal of Urban technology, 2011, 18(2):65-82.
[30] 李琼.中外智慧图书馆的发展比较研究[D].太原:山西大学, 2018.
[31] 王世伟.全球大都市图书馆服务的新环境、新理念、新模式、新形态论略[J].图书馆论坛, 2014, 34(12):1-13.
[32] IAN M. Smart cities, smart libraries, and smart librarians[J]. Library journal, 2013, 32(1):4-7.
[33] OZEER A, SUNGKUR Y, NAGOWAH S. Turning a traditional library into a smart library[C]//International conference on computational intelligence and knowledge economy. Dubai:IEEE, 2019:352-358.
[34] 张春丽.开放科学环境下图书馆智慧服务研究[J].图书馆学刊, 2020, 42(10):80-83.
[35] 李梓奇,朱泽,王常珏,等.智慧图书馆发展的"十四五"开局之问——"2021第五届智慧图书馆发展论坛"学术报告述评[J].大学图书馆学报, 2021, 39(6):23-29.
[36] 吴涛.推荐系统中推荐算法研究及其应用[D].北京:北京交通大学, 2019.
[37] GOMEZ C, HUNT N. The Netflix recommender system:algorithms, business value, and innovation[J]. ACM transactions on management information systems, 2015, 6(4):1-19.
[38] DAVIDSON J, LIVINGSTON B, SAMPATH D, et al. The YouTube video recommendation system[C]//Proceedings of the fourth ACM conference on recommender systems. New York:Association for Computing Machinery, 2010:293-296.
[39] ANWAR K, SIDDIQUI J, SAQUIB S. Machine learning techniques for book recommendation:an overview[C]//Proceedings of international conference on sustainable computing in science, technology and management (SUSCOM). Jaipur:Amity University Rajasthan, 2019:26-28.
[40] KEITA T, NOBUYA T, SHO S, et al. Book recommendation based on library loan records and bibliographic information[C]//2014 IIAI 3rd international conference on advanced applied informatics. Kokura:IEEE, 2014:478-486.
[41] TEWARI A, KUMAR A, BARMAN A. Book recommendation system based on combine features of content based filtering, collaborative filtering and association rule mining[C]//2014 IEEE international advance computing conference. Gurgaon:IEEE, 2014:500-503.
[42] JOMSRI P. Book recommendation system for digital library based on user profiles by using association rule[C]//Fourth edition of the international conference on the innovative computing technology. Luton:IEEE, 2014:130-134.
[43] XIN L, HAIHONG E, JUNDE S, et al. Collaborative book recommendation based on readers'borrowing records[C]//2013 international conference on advanced cloud and big data. Nanjing:IEEE, 2013:159-163.
[44] 何峻,蔡蓉华.中文图书评价体系研究[J].大学图书馆学报, 2016, 34(3):51-58, 15.
[45] XIN L, HAIHONG E, JUNJIE T, et al. Enhancing book recommendation with side information[C]//2014 International conference on service sciences. Nanjing:IEEE, 2014:142-146.
[46] 朱世琴,邱悦,陈红英.融入评论指标的中文图书综合评价体系适应性研究[J].图书情报工作, 2021, 65(9):23-31.
[47] 叶继元,谢欢.从粗放型到精细化:图书馆馆藏评价的新趋向[J].图书馆建设, 2018(4):74-78.
[48] ZHANG F. A personalized time-sequence-based book recommendation algorithm for digital libraries[J]. IEEE access, 2016, 4:2714-2720.
[49] CHHAVI R, SANJAY K. Building a book recommender system using time based content filtering[J]. WSEAS transactions on computers, 2012, 11(1/3):27-33.
[50] 刘旭.融合聚类和时间因素的协同过滤推荐算法研究与应用[D].南京:南京邮电大学, 2021.
[51] 唐铭.考虑用户成长性的图书推荐系统研究[D].上海:上海交通大学, 2019.
[52] SARWAR B, KARYPIS G, KONSTAN J, et al. Item-based collaborative filtering recommendation algorithms[C]//Proceedings of the tenth international conference on World Wide Web. New York:Association for Computing Machinery, 2001:285-295.
[53] KARYPIS G. Evaluation of item-based Top-N recommendation algorithms[C]//Proceedings of the tenth international conference on information and knowledge management. New York:Association for Computing Machinery, 2001:247-254.
[54] PANG N. A Personalized recommendation algorithm for semantic classification of new book recommendation services for university libraries[J]. Mathematical problems in engineering, 2022(4):1-8.
[55] HUANG Y. A course-oriented book recommendation method based on library classification ontology[C]//2016 International conference on logistics, informatics and service sciences. Sydney:IEEE, 2016:1-5.
[56] LUFT J, INGHAM H. The Johari Window:a agraphic model for interpersonal relations[C]//Proceedings of the western training laboratory in group development. Los Angeles:University of California Western Training Lab, 1955:245-246.
[57] MITTELMAN W. Maslow's study of self-actualization:a reinterpretation[J]. Journal of humanistic psychology, 1991, 31(1):114-135.
[58] 熊回香,窦燕.基于LDA主题模型的标签混合推荐研究[J].图书情报工作, 2018, 62(3):104-113.
[59] SITANGGANG I, HUSIN N, AGUSTINA A, et al. Sequential pattern mining on library transaction data[C]//2010 International symposium on information technology. Malaysia:The Symposium in Information Technology, 2010:1-4.
[60] 陈宇亮,沈奎林.基于读者评论的图书推荐系统研究[J].图书情报导刊, 2016, 1(9):6-9.
[61] CHANDRAMOULI B, LEVANDOSKI J, ELDAWY A, et al. StreamRec:a real-time recommender system[C]//ACM SIGMOD international conference on management of data. Sigmod:ACM, 2011:1243-1245.
[62] ADOMAVICIUS G, TUZHILIN A. Toward the next generation of recommender systems:a survey of the state-of-the-art and possible extensions[J]. IEEE transactions on knowledge and data engineering, 2005, 17(6):734-749.
[63] "慧源共享"全国高校开放数据创新研究大赛[EB/OL].[2023-04-25]. https://www.huiyuan.sh.edu.cn/competition/#/data.
[64] The University of Adelaide Library. Library of the future report[EB/OL].[2023-04-25]. https://www.adelaide.edu.au/library/about-the-library/reports-publications#other-library-publications.
[65] 梁思怡,彭星亮,秦斌,等.时间上下文优化的协同过滤图书推荐[J].图书馆论坛, 2021, 41(3):113-121.
[66] 清华新闻网.图书馆通还智能小车启用仪式在清华举行[EB/OL].[2023-04-25]. https://www.tsinghua.edu.cn/info/1731/70931.htm.
[67] 孙学钢.高校图书馆智慧服务发展现状调查与分析-以"985工程"院校为例[J].大学图书情报学刊, 2017(9):66-70.
文章导航

/