情报研究

基于专利文献的“卡脖子”技术识别研究——以数控机床领域为例

  • 曹琨 ,
  • 吴新年 ,
  • 白光祖 ,
  • 郑玉荣 ,
  • 靳军宝 ,
  • 李莉
展开
  • 1 中国科学院西北生态环境资源研究院 兰州 730000;
    2 中国科学院大学经济与管理学院信息资源管理系 北京 100049;
    3 中国工程科技创新战略研究院 北京 100088
曹琨,博士研究生;白光祖,研究馆员,博士;郑玉荣,副研究馆员,硕士;靳军宝,副研究馆员,博士;李莉,助理研究员,博士。

收稿日期: 2023-03-08

  修回日期: 2023-06-13

  网络出版日期: 2023-10-25

基金资助

本文系国家社会科学基金项目“演化视角下新兴技术形成机制与识别方法研究”(项目编号:20BTQ094)和中国工程院紧急重点咨询项目“技术贸易安全管理前沿研究”(项目编号:2021-JZ-10)研究成果之一。

Identification of “Neck Stuck” Technologies Based on Patent Literature: A Case Study in the Field of CNC Machine Tools

  • Cao Kun ,
  • Wu Xinnian ,
  • Bai Guangzu ,
  • Zheng Yurong ,
  • Jin Junbao ,
  • Li Li
Expand
  • 1 Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000;
    2 Department of Information Resources Management, School of Economics and Management, University of Chinese Academy of Sciences, Beijing 100049;
    3 Chinese Academy of Engineering Innovation Strategy, Beijing 100088

Received date: 2023-03-08

  Revised date: 2023-06-13

  Online published: 2023-10-25

摘要

[目的/意义] “卡脖子”技术是现阶段制约我国战略性新兴产业高质量发展的关键瓶颈,为实现产业链自主安全可控,高效准确识别“卡脖子”技术十分必要。[方法/过程] 以专利文献作为数据来源,首先根据技术共现网络测度并遴选关键核心技术,其次基于技术差距及技术依赖的视角,综合考虑后发优势与自主创新能力的关系,从技术价值优势、技术竞争优势、技术垄断地位和自主创新能力这 4 个维度设计“卡脖子”技术识别指标体系,然后运用 CRITIC-TOPSIS 方法构建一套系统的“卡脖子”技术识别模型,最后在数控机床领域进行实证研究。[结果/结论] 应用所提出方法的识别结果是,我国在数控机床领域存在 34 项潜在“卡脖子”技术,主要集中在数控机床控制或调节系统、数控机床关键功能部件、车削或镗削数控机床、电数字数据处理等领域,将此结果与美国商业出口管制清单进行对比,具有较好的一致性,由此验证本方法的可行性和可靠性。

本文引用格式

曹琨 , 吴新年 , 白光祖 , 郑玉荣 , 靳军宝 , 李莉 . 基于专利文献的“卡脖子”技术识别研究——以数控机床领域为例[J]. 图书情报工作, 2023 , 67(19) : 80 -91 . DOI: 10.13266/j.issn.0252-3116.2023.19.008

Abstract

[Purpose/Significance] “Neck Stuck” technologies is the key point that restricts the high-quality development of China’s strategic emerging industries at the present stage. To ensure the independent security control of the industrial chain, it is necessary to identify the “Neck Stuck” technologies efficiently and accurately. [Method/Process] This study utilized patent literature as the main data source. Firstly, key core technologies were selected based on technical co-occurrence network measurements. Secondly, the relationship between latecomer advantages and independent innovation capabilities was comprehensively considered from the perspective of technical gap and technical dependence. A “Neck Stuck” technologies identification index system was designed across four dimensions: technical value advantage, technical competition advantage, technical monopoly status, and independent innovation ability. Then, a systematic “Neck Stuck” technologies identification model was constructed using the CRITIC-TOPSIS method. Finally, empirical research was conducted in the field of CNC machine tools. [Result/Conclusion] The results of the identification process using the proposed method in this study reveal the existence of 34 potential “Neck Stuck” technologies in the field of CNC machine tools in China. These technologies are primarily concentrated in the control or adjustment system, key functional components, turning or boring CNC machine tools, and digital data processing. A comparison of these findings with the U.S. Commerce Control List confirms the high degree of consistency, thus validating the feasibility and reliability of the proposed method.

参考文献

[1] 罗超亮, 符正平, 刘冰, 等. 战略性新兴产业国际贸易网络的演化及动力机制研究[J]. 国际贸易问题, 2022(3):121-139. (LUO C L, FU Z P, LIU B, et al. Research on the evolution of strategic emerging industries' international trade network and its dynamic mechanism[J]. Journal of international trade, 2022(3):121-139.)
[2] 高旭, 白如江, 王效岳. 面向" 卡脖子" 技术场景的科技前沿发现与态势演化研究——以集成电路技术为例[J]. 图书情报工作, 2023, 67(4):40-54. (GAO X, BAI R J, WANG X Y. Frontier discovery of science and technology and research on situation evolution for "neck stuck" technical scenario:taking integrated circuit technology as an example[J]. Library and information service, 2023, 67(4):40-54.)
[3] 戴魁早, 方杰炜. 贸易壁垒对出口技术复杂度的影响——机制与中国制造业的证据[J]. 国际贸易问题, 2019(12):136- 154. (DAI K Z, FANG J W. The impact of trade barriers on export technical sophistication:mechanisms and evidence of China's manufacturing industry[J]. Journal of international trade, 2019(12):136-154.)
[4] 清华大学战略与安全研究中心. 国际战略与安全研究报告[R]. 北京:清华大学战略与安全研究中心, 2022. (Center for International Security and Strategy Tsinghua University. International security and strategy studies report[R]. Beijing:Center for International Security and Strategy Tsinghua University, 2022.)
[5] 中国工程科技发展战略研究院. 2021中国战略性新兴产业发展报告[M]. 北京:科学出版社, 2020. (Chinese Engineering S & T Strategy for Development. China's strategic emerging industries development report[M]. Beijing:Science Press, 2020.)
[6] 周波, 冷伏海. 技术识别研究进展[J]. 情报学进展, 2022(1):315-348. (ZHOU B, LENG F H. The research progress of technology identification[J]. Advances in information science, 2022(1):315-348.)
[7] 李昱璇, 方卫华. " 卡脖子" 技术概念辨析——内生性矛盾、国家主体与外部限制的共同建构[EB/OL].[2023-08-20]. https://kns.cnki.net/kcms/detail/11.1805.G3.20230407.1536.002.html. (LI Y X, FANG W H. Conceptual discrimination of "neckjamming" technology:the co-construction of endogenous contradiction, state based and external restriction[EB/OL].[2023-08-20]. https://kns.cnki.net/kcms/detail/11.1805.G3.20230407.1536.002.html.)
[8] 汤志伟, 李昱璇, 张龙鹏. 中美贸易摩擦背景下" 卡脖子" 技术识别方法与突破路径——以电子信息产业为例[J]. 科技进步与对策, 2021, 38(1):1-9. (TANG Z W, LI Y X, ZHANG L P. Identification method and breakthrough path of "neckjamming" technologies under the background of Sino-US trade friction:a case of the electronic information industry[J]. Science & technology progress and policy, 2021, 38(1):1-9.)
[9] 郑国雄, 李伟, 刘溉, 等. 基于德尔菲法和层次分析法的" 卡脖子" 关键技术甄选研究——以生物医药领域为例[J]. 世界科技研究与发展, 2021, 43(3):331-343. (ZHENG G X, LI W, LIU G, et al. A research based on careful and thorough selection of "neck-jamming" technologies using delphi method and AHP:a case study in biomedical field[J]. World sci-tech R & D, 2021, 43(3):331-343.)
[10] 赵君彦, 赵婧姝. 奶业" 卡脖子" 关键技术甄选机制及培育路径——基于产业链与创新链协同视角[J]. 中国畜牧杂志, 2023, 59(4):323-328. (ZHAO J Y, ZHAO L S. Selection mechanism and cultivation path of key technologies for the dairy industry "bottleneck":a synergistic perspective on industry chain and innovation chain[J]. Chinese journal of animal science, 2023, 59(4):323-328.)
[11] 邓岩, 陈燕娟. 种源" 卡脖子" 问题的识别、成因与破解路径研究——以农作物种业为例[J]. 农业现代化研究, 2022, 43(1):20-28. (DENG Y, CHEN Y J. The identification, causes, and solution path of the germplasm resource bottleneck issue:a case study of China's crop seed industry[J]. Research of agricultural modernization, 2022, 43(1):20-28.)
[12] 李昱璇, 汤志伟. " 卡脖子" 技术问题的综合解决方案——以S省为例[J]. 中国科技论坛, 2022(1):7-13. (LI Y X, TANG Z W. Research on comprehensive solution for the problem of "neck-jamming" technologies:taking province S as an example[J]. Forum on science and technology in China, 2022(1):7-13.)
[13] 唐恒, 邵泽宇, 蔡兴兵, 等. 专利视角下" 卡脖子" 技术短板甄选研究[J]. 中国发明与专利, 2021, 18(1):54-59. (TANG H, SHAO Z Y, CAI X B, et al. Research on the selection of the technical shortcomings of "blocking the neck" from the perspective of patent[J]. China invention & patent, 2022, 18(1):54-59.)
[14] 董坤, 白如江, 许海云. 省域视角下产业潜在" 卡脖子" 技术识别与分析研究——以山东省区块链产业为例[J]. 情报理论与实践, 2021, 44(11):197-203. (DONG K, BAI R J, XU H Y. A method to identify and analyze industrial bottleneck technology (BNT) from the provincial perspective:a case study of block chain industry in Shandong province[J]. Information studies:theory & application, 2021, 44(11):197-203.)
[15] 陈劲, 阳镇, 朱子钦. " 十四五" 时期" 卡脖子" 技术的破解:识别框架、战略转向与突破路径[J]. 改革, 2020(12):5-15. (CHEN J, YANG Z, ZHU Z Q. The solution of "neck sticking" technology during the 14th five-year plan period:identification framework, strategic change and breakthrough path[J]. Reform, 2020(12):5-15.)
[16] 邢冬梅. " 卡脖子" 技术问题的成因与规避——技术轨道的分析视角[J]. 国家治理, 2020(1):21-25. (XING D M. The causes and mitigation of "neck sticking" technical issues:an analytical perspective from the technological track[J]. Governance, 2020(1):21-25.)
[17] 谭劲松, 宋娟, 王可欣, 等. 创新生态系统视角下核心企业突破关键核心技术" 卡脖子"——以中国高速列车牵引系统为例[J]. 南开管理评论, 2022(5):1-28. (TAN J S, SONG J, WANG K X, et al. Breakthrough of key core technology "neckjamming" by focal firm from innovation ecosystem perspective:a case study of Chinese high-speed train traction system[J]. Nankai business review, 2022(5):1-28.)
[18] 周琪. 高科技领域的竞争正改变大国战略竞争的主要模式[J]. 太平洋学报, 2021, 29(1):1-20. (ZHOU Q. Competition in the high-tech field is changing the main mode of strategic competition among major powers[J]. Pacific journal, 2021, 29(1):1-20.)
[19] 张治河, 苗欣苑. " 卡脖子" 关键核心技术的甄选机制研究[J]. 陕西师范大学学报(哲学社会科学版), 2020, 49(6):5-15. (ZHANG Z H, MIAO X Y. Research on the selection mechanism of the key and core technologics[J]. Journal of Shaanxi Normal University (philosophy and social sciences edition), 2020, 49(6):5-15.)
[20] POSNER M V. International trade and technical change[J]. Oxford economic papers, 1961, 13(3):323-341.
[21] 杨武, 杨大飞, 琚云. 技术差距理论框架下产业技术安全测度研究——以5G移动通信产业为例[J]. 科技进步与对策, 2019, 36(8):60-67. (YANG W, YANG D F, JU Y. Research on measuremen of industrial technology security based on technology gap theory:the empirical analysis of 5G industry[J]. Science & technology progress and policy, 2019, 36(8):60-67.)
[22] KUMAR S, RUSSELL R R. Technological change, technological catch-up, and capital deepening:relative contributions to growth and convergence[J]. American economic review, 2002, 92(3):527-548.
[23] 刘志鹏, 程燕林, 代涛, 等. 技术依赖形成和影响经济安全的机制研究——基于技术经济安全视角[J]. 科学学研究, 2023, 41(6):1006-1013. (LIU Z P, CHENG Y L, DAI T, et al. Research on the mechanism of technological dependence on economic security:based on the perspective of techno-economic security[J]. Studies in science of science, 2023, 41(6):1006- 1013.)
[24] 江瑶, 陈旭, 胡斌. "卡脖子"关键核心技术两阶段漏斗式甄选模型构建及应用研究[J]. 情报杂志, 2023, 42(3):94- 101. (JIANG Y, CHEN X, HU B. Research on the construction and application of two-stage funnel selection model for "neckjamming" key core technologies[J]. Journal of intelligence, 2023, 42(3):94-101.)
[25] 周磊, 吕璐成, 穆克亮. 中美科技博弈背景下的卡脖子技术识别方法研究[J]. 情报杂志, 2023, 42(8):69-76. (ZHOU L, LV L C, MU K L. Identifying bottleneck technology and predicting its fusion trend under the background of Sino-US S & T game[J]. Journal of intelligence, 2023, 42(8):69-76.)
[26] 赵雪峰, 吴德林, 吴伟伟, 等. 基于深度学习与多分类轮询机制的高质量" 卡脖子" 技术专利识别模型——以专利申请文件为研究主体[EB/OL].[2023-08-20]. https://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/10.11925/infotech.2096-3467.2022-0721. (ZHAO X F, WU D L, WU W W, et al. High-quality core technology patent identification model based on deep learning and multi-category polling mechanism:with patent application documents as the research subject[EB/OL].[2023-08-20]. https://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/10.11925/infotech.2096-3467.2022-0721.)
[27] 程燕林, 代涛, 丁予业, 等. 技术经济安全:研究重点、演化机理和评估框架[J]. 中国科学院院刊, 2023, 38(4):541- 552. (CHENG Y L, DAI T, DING Y Y, et al. Techno-economic security:key issues, evolution mechanism and evaluation framework[J]. Bulletin of Chinese Academy of Sciences, 2023, 38(4):541-552.)
[28] 习近平. 论科技自立自强[M]. 北京:中央文献出版社, 2023. (XI J P. On technological self-reliance and self-strengthening[M]. Baijing:Central Literature Publishing House, 2023.)
[29] 李瑞茜, 陈向东. 基于专利共类的关键技术识别及技术发展 模式 研究[J]. 情报 学报, 2018, 37(5):495-502. (LI R X, CHEN X D. Patent co-classification based on key technology identification and research on technology development mode[J]. Journal of the China Society for Scientific and Technical Information, 2018, 37(5):495-502.)
[30] 杨武, 杨大飞. 基于专利数据的产业核心技术识别研究——以5G移动通信产业为例[J]. 情报杂志, 2019, 38(3):39-45. (YANG W, YANG D F. Research on identification of industrial core technology based on patent data:taking the field of fifth generation mobile communication industry as an example[J]. Journal of intelligence, 2019, 38(3):39-45.)
[31] 黄鲁成, 刘春文, 吴菲菲, 等. 基于NPCIA的核心技术识别 模型 及应 用研 究[J]. 科学 学研 究, 2020, 38(11):1998- 2007. (HUANG L C, LIU C W, WU F F, et al. Core technology identification model and application based on NPCIA[J]. Studies in science of science, 2020, 38(11):1998-2007.)
[32] 王秀红, 高敏. 基于BERT-LDA的关键技术识别方法及其实证研究——以农业机器人为例[J]. 图书情报工作, 2021, 65(22):114-125. (WANG X H, GAO M, The key technology identification method based on BERT-LDA and its empirical research:a case study of agricultural robots[J]. Library and information service, 2021, 65(22):114-125.)
[33] 许学国, 桂美增. 基于机器学习的新能源汽车核心技术识别及布局研究[J]. 科技管理研究, 2021, 41(9):96-106. (XU X G, GUI M Z. Research on identification and layout of core technologies of new energy vehicles based on machine learning[J]. Science and technology management research, 2021, 41(9):96-106.)
[34] 陈伟, 林超然, 孔令凯, 等. 基于专利文献挖掘的关键共性 技术 识别 研究[J]. 情报 理论 与实 践, 2020, 43(2):92- 99. (CHEN W, LIN C R, KONG L K, et al. Research on key generic technology identification based on text mining of patent document[J]. Information studies:theory & application, 2020, 43(2):92-99.)
[35] BRIN S, PAGE L. The anatomy of a large-scale hypertextual web search engine[J]. Computer networks and ISDN systems, 1998, 30(1-7):107-117.
[36] 范书琴, 刘国新. 专利质量视角下国外技术锁定的模糊识别研究——以锂电池隔膜技术为例[J]. 科学学与科学技术管理, 2022, 43(12):132-152. (FAN S Q, LIU G X. Fuzzy identification of foreign technology lock-in from the perspective of patent quality:a case study of lithium battery separators technology[J]. Science of science and management of S & T, 2022, 43(12):132- 152.)
[37] 陈思思, 何俊卿, 郑祥, 等. 基于评估工具的专利价值评估发展现状研究[J]. 科技管理研究, 2022, 42(21):176-184. (CHEN S S, HE J Q, ZHENG X, et al. Research on the development status of patent evaluation based on evaluation tools[J]. Science and technology management research, 2022, 42(21):176-184.)
[38] 徐霞, 吴福象, 王兵. 基于国际专利分类的关键核心技术识别研究[J]. 情报杂志, 2022, 41(10):74-81. (XU X, WU F X, WANG B. Research on identification of key core technology based on international patent classification[J]. Journal of intelligence, 2022, 41(10):74-81.)
[39] BALASSA B. Trade liberalisation and "revealed" comparative advantage[J]. The manchester school, 1965, 33(2):99-123.
[40] 胡海容, 石冰琪, 周孟蓉. 基于HHI指数和E指数的我国区块链技术专利集中度测算研究[J]. 世界科技研究与发展, 2021, 43(5):523-534. (HU H R, SHI B Q, ZHOU M R. Research on patent concentration measurement of China's blockchain technology based on HHI index and E index[J]. World sci-tech R & D, 2021, 43(5):523-534.)
[41] 郑玉荣, 吴新年, 田晓阳, 等. 基于产业尺度的核心专利判别方法研究——以镍基高温合金专利为例[J]. 情报理 论与 实践, 2014, 37(7):81-85. (ZHENG Y R, WU X N, TIAN X Y, et al. Research on core patent edentification method based on industrial scale:taking nickel-based high-temperature alloy patents as an example[J]. Information studies:theory & application, 2014, 37(7):81-85.)
[42] 马铭, 王超, 许海云, 等. 面向语义信息分析的多层次技术演化轨迹识别方法研究[J]. 图书情报工作, 2022, 66(4):103-117. (MA M, WANG C, XU H Y, et al. Research on multilevel technology evolution trajectory recognition method facing semantic information analysis[J]. Library and information service, 2022, 66(4):103-117.)
[43] DIAKOULAKI D, MAVROTAS G, PAPAYANNAKIS L. Determining objective weights in multiple criteria problems:the critic method[J]. Computers and operations research, 1995, 22(7):763-770.
[44] SHIH H S, SHYUR H J, LEE E S. An extension of TOPSIS for group decision making[J]. Mathematical & computer modelling, 2007, 45(7):801-813.
[45] 吕璐成, 韩涛, 陈芳, 等. 美国商业管制清单与专利自动映射方法及实证研究[J]. 情报学报, 2022, 41(1):50-61. (LV L C, HAN T, CHEN F, et al. Automatic mapping method and empirical research of U.S. Commerce Control List data and patent data[J]. Journal of the China Society for Scientific and Technical Information, 2022, 41(1):50-61.)
[46] 梁帅, 高继平. 产业技术结构与" 卡脖子" 技术特征——以高端数控机床为例[J]. 科技导报, 2021, 39(24):75-83. (LIANG S, GAO J P. Industrial technology structure and the bottleneck technique:with CNC machine tools as an example[J]. Science & technology review, 2021, 39(24):75-83.)
文章导航

/