知识组织

基于FAIR原则的网络叙词表开放度评估与分析

  • 赵洁 ,
  • 岳好
展开
  • 1 山西财经大学信息学院 太原 030006;
    2 中国科学技术信息研究所 北京 100038
赵洁,讲师,博士,硕士生导师。

收稿日期: 2023-06-12

  修回日期: 2023-08-28

  网络出版日期: 2023-12-16

基金资助

本文系教育部人文社会科学青年基金项目“叙词表组件化跨界重用研究”(项目编号:22YJC870022)研究成果之一。

Evaluation and Analysis of Web Thesaurus Openness Based on FAIR Principles

  • Zhao Jie ,
  • Yue Hao
Expand
  • 1 School of Information, Shanxi University of Finance and Economics, Taiyuan 030006;
    2 Institute of Scientific and Technical Information of China, ISTIC, Beijing 100038

Received date: 2023-06-12

  Revised date: 2023-08-28

  Online published: 2023-12-16

摘要

[目的/意义] 利用FAIR原则评估网络叙词表的开放情况,有利于理清叙词表开放的优势和不足,提高叙词表FAIR化水平。[方法/过程] 借鉴现有基于FAIR原则构建的评价框架,结合叙词表特点,制定适用于网络叙词表开放度评估的三级指标体系。依据该指标体系,对选取的17个样本平台开展具体指标调研和分析,并从可发现、可访问、可互操作和可重用4个维度分别分析叙词表FAIR化水平。最后针对这4个方面分别提出促进叙词表FAIR化的建议。[结果/结论] 所构建的网络叙词表开放度评估指标体系包含三级指标,一级、二级、三级指标分别有4、11、17个。经评估,发现多数网络叙词表的开放程度仍待提升,开放的薄弱环节集中在可互操作性和可重用性上,FAIR原则应用有待进一步发展,尤其是在元数据的丰富度和数据互操作、重用方面。

本文引用格式

赵洁 , 岳好 . 基于FAIR原则的网络叙词表开放度评估与分析[J]. 图书情报工作, 2023 , 67(22) : 128 -139 . DOI: 10.13266/j.issn.0252-3116.2023.22.013

Abstract

[Purpose/Significance] Using FAIR principles to evaluate the Web thesaurus openness is helpful to clarify the advantages and disadvantages of opening thesaurus and improve the level of fairness of thesaurus. [Method/Process] Referring to the existing evaluation framework based on FAIR with the characteristics of thesaurus, this paper developed a three-level index system for evaluating the Web thesaurus openness. According to the index system, specific index research and analysis were carried out on 17 sample platforms, and the level of thesaurus fairness was analyzed from the four dimensions of findability, accessibility, interoperability and reusability. Finally, suggestions and prospects were put forward to promote the application of thesaurus in the FAIR principles from these four aspects. [Result/Conclusion] The constructed evaluation index system of Web thesaurus openness is composed of three levels, which includes 4, 11 and 17 indicators respectively from level 1 to level 3. After evaluation, it is found that the openness degree of most Web thesauri still need to be improved, and the weak links of openness focus on interoperability and reusability. The application of FAIR principles needs to be further developed, especially in the aspects of metadata richness, data interoperability and reusability.

参考文献

[1] 武学超, 罗志敏. 开放科学时代大学科研范式转型[J]. 高教探索, 2019, 192(4):5-11. (WU X C, LUO Z M. Paradigm transformation of university research in open science era[J]. Higher education exploration, 2019, 192(4):5-11.)
[2] 陈传夫, 李秋实. 数据开放获取使科学惠及更广——中国开放科学与科学数据开放获取的进展与前瞻[J]. 信息资源管理学报, 2020, 10(1):4-13. (CHEN C F, LI Q S. Open access to data makes science benefit more individuals:progress and prospect of open science and open access to scientific data in China[J]. Journal of information resources management, 2020, 10(1):4-13.)
[3] WILKINSON M D, DUMONTIER M, AALBERSBERG I J, et al. The FAIR guiding principles for scientific data management and stewardship[J]. Scientific data, 2016, 3:160018.
[4] HOLUB P, KOHLMAYER F, PRASSER F, et al. Enhancing reuse of data and biological material in medical research:from FAIR to FAIRHealth[J]. Biopreservation and biobanking, 2018, 16(2):97-105.
[5] RYCHLIK M, ZAPPA G, AÑORGA L. Ensuring food integrity by metrology and FAIR data principles[J/OL]. Frontiers in chemistry, 2018, 6:1-7[2023-10-02]. https://www.frontiersin.org/articles/10.3389/fchem.2018.00049/full.
[6] VAN REISEN M, STOKMANS M, MAWERE M, et al. FAIR practices in Africa[J]. Data intelligence, 2020, 2(1/2):246-256.
[7] ZOU Q. Building a platform for linked open thesauri[J]. Library hi tech, 2013, 31(4):620-637.
[8] KEMPF A O, NEUBERT J. The role of thesauri in an open Web:a case study of the STW thesaurus for economics[J]. Knowledge organization, 2016, 43(3):160-173.
[9] ALBERTONI R, MARTINO M D, FRANCO S D, et al. EARTh:an environmental application reference thesaurus in the linked open data cloud[J]. Semantic Web, 2014, 5(2):165-171.
[10] GARCIA-MARCO F J. Enhancing the visibility and relevance of thesauri in the Web:searching for a hub in the linked data environment[J]. Knowledge organization, 2016, 43(3):193-202.
[11] 王晓光, 侯西龙, 程航航, 等. 敦煌壁画叙词表构建与关联数据发布[J]. 中国图书馆学报, 2020, 46(4):69-84. (WANG X G, HOU X L, CHENG H H, et al. The construction and linked data publishing of Dunhuang mural thesaurus[J]. Journal of library science in China, 2020, 46(4):69-84.)
[12] ZENG M L, CLUNIS J. FAIR+FIT:guiding principles and functional metrics for linked open data (LOD) KOS products[J]. Journal of data and information science, 2020, 5(1):93-118.
[13] 曹雨晴, 冯东昕, 张学福, 等. 开放环境下农业科技信息资源开放共享——以FAO的实践为例[J]. 农业图书情报学报, 2020, 32(12):50-58. (CAO Y Q, FENG D X, ZHANG X F, et al. Opening up and sharing agricultural scientific and technological information resources:case study of the practice of FAO[J]. Journal of library and information science in agriculture, 2020, 32(12):50-58.)
[14] NGAH M K, YON J, LANDRIEU F, et al. A new semantic resource responding to the principles of open science:the meat thesaurus as an IT tool for dialogue between sector actors[J]. Meat science, 2022, 192:108849.
[15] SCOTT J K, BREDEN F. The adaptive immune receptor repertoire community as a model for FAIR stewardship of big immunology data[J]. Current opinion in systems biology, 2020, 24:71-77.
[16] JACOB D, DAVID R, AUBIN S, et al. Making experimental data tables in the life sciences more FAIR:a pragmatic approach[J]. Gigascience, 2020, 9(12):1-6.
[17] REISEN M V, MONS B. Introduction to the special issue:data intelligence on patient health records[J]. Data intelligence, 2022, 4(4):671-672.
[18] COLES S J, FREY J G, WILLIGHAGEN E L, et al. Taking FAIR on the ChIN:the chemistry implementation network[J]. Data intelligence, 2020, 2(1/2):131-138.
[19] SALES L, HENNING P, VEIGA V, et al. GO FAIR Brazil:a challenge for Brazilian data science[J]. Data intelligence, 2020, 2(1/2):238-245.
[20] INAU E T, NALUGALA R, NANDWA W M, et al. FAIR equivalency, regulatory framework and adoption potential of FAIR guidelines in health in Kenya[J]. Data intelligence, 2022, 4(4):852-866.
[21] TAYE G T, AMARE S Y, GEBREMESKEL G T, et al. FAIR equivalency with regulatory framework for digital health in Ethiopia[J]. Data intelligence, 2022, 4(4):813-826.
[22] BASAJJA M, RESIEN M V, OLADIPO F. FAIR equivalency with regulatory framework for digital health in Uganda[J]. Data intelligence, 2022, 4(4):771-797.
[23] CHINDOZA K. Regulatory framework for e health data policies in Zimbabwe:measuring FAIR equivalency[J]. Data intelligence, 2022, 4(4):827-838.
[24] 李春秋, 杜博雅, 耿骞, 等.医学科学数据开放平台FAIR原则的应用评估与调查分析[J]. 图书情报工作, 2022, 66(3):72-82. (LI C Q, DU B Y, GENG Q, et al. Application assessment and survey analysis of FAIR principle in medical scientific data open platforms[J]. Library and information service, 2022, 66(3):72-82.)
[25] 贾君枝. 资源描述中的词表重用类型与实现方式[J]. 中国图书馆学报, 2021, 47(4):76-85. (JIA J Z. Type and implementation of vocabulary reuse in resource description[J]. Journal of library science in China, 2021, 47(4):76-85.)
[26] PURNAMA J P H, LIN Y, NODEHI S, et al. FAIR versus open data:a comparison of objectives and principles[J]. Data intelligence, 2022, 4(4):867-881.
[27] WILKINSON M D, SANSONE S A, SCHULTES E, et al. A design framework and exemplar metrics for FAIRness[J]. Scientific data, 2018, 5:180118.
[28] THOMAS E. FAIR data assessment tool[EB/OL].[2023-10-10]. http://blog.ukdataservice.ac.uk/fair-data-assessment-tool/.
[29] HICKS R, BURTON A, DAILEY M, et al. FAIR data self assessment tool[EB/OL].[2023-10-11]. https://ardc.edu.au/resource/fair-dataself-assessment-tool/.
[30] Research data alliance FAIR data maturity model working group. FAIR data maturity model:specification and guidelines[EB/OL].[2023-10-11]. https://www.rd-alliance.org/group/fair-data-maturitymodel-wg/outcomes/fair-data-maturity-model-specification-andguidelines-0.
[31] DEVARAJU A, HUBER R, MOKRANE M, et al. FAIRsFAIR data object assessment metrics(v0.4)[EB/OL].[2023-10-12]. https://pdfs.semanticscholar.org/33e1/d504b4018646ec43e66befd7a09ed2edcd7d.pdf?_gl=1*ztbgz4*_ga*NjE4NzcyMTM1LjE2OTg1ODkxMjM.*_ga_H7P4ZT52H5*MTY5ODU4OTEyMi4xLjAuMTY5ODU4OTE1NS4yNy4wLjA.
[32] GENOVA F, ARONSEN J M, BEYAN O, et al. EOSC FAIR metricssecond draft for consultation[EB/OL].[2023-10-12]. https://www.semanticscholar.org/paper/EOSC-FAIR-Metrics-Second-Draft-forConsultation-Genova-Aronsen/ef315f92592faa4afc58661b6f6d9ce78120cf21.
[33] 叶兰. FAIR数据评估模型与工具研究[J]. 图书情报工作, 2021, 65(16):138-147. (YE L. Research on FAIR data assessment models and tools[J]. Library and information service, 2021, 65(16):138-147.)
[34] 姜恩波, 潘婷, 张蒂. 基于FAIR原则的地球科学数据中心调研与评估分析[J]. 图书馆学研究, 2023(4):52-70. (JIANG E B, PAN T, ZHANG D. Research and evaluation analysis of earth science data centers based on FAIR principles[J]. Research on library science, 2023(4):52-70.)
[35] CRAIG A, AMBATI A, DUTTA S, et al. Definitions, formulas, and simulated examples for plagiarism detection with FAIR metrics[J]. Proceedings of the Association for Information Science and Technology, 2019, 56(1):51-57.
[36] 邢文明, 郭安琪, 秦顺, 等. 科学数据管理与共享的FAIR原则——背景、内容与实施[J]. 信息资源管理学报, 2021, 11(2):60-68,84. (XING W M, GUO A Q, QIN S, et al. FAIR principle of scientific data management and sharing:background, content and implementation[J]. Journal of information resources management, 2021, 11(2):60-68,84.)
[37] JUTY N, WIMALARATNE S M, SOILAND-REYES S, et al. Unique, persistent, resolvable:identifiers as the foundation of FAIR[J]. Data intelligence, 2020, 2(1/2):30-39.
[38] 陶俊. 词表语义组织研究的演进(1998-2018)[J]. 图书情报工作, 2018, 62(21):140-148. (TAO J. A survey for research on semantic organization of vocabularies (1998-2018)[J]. Library and information service, 2018, 62(21):140-148.)
文章导航

/