知识组织

动态多层网络视域下的知识解构与迁移路径识别

  • 王宗水 ,
  • 刘苇 ,
  • 赵红 ,
  • 孙倬
展开
  • 1 北京信息科技大学经济管理学院 北京 100192;
    2 绿色发展大数据决策北京市重点实验室 北京 100192;
    3 中国石油大学(华东)经济管理学院 青岛 266580;
    4 中国科学院大学经济与管理学院 北京 100190;
    5 郑州大学信息管理学院 郑州 450001
王宗水,教授,博士;刘苇,讲师,博士;赵红,教授,博士,博士生导师。

收稿日期: 2023-07-11

  修回日期: 2023-08-23

  网络出版日期: 2023-12-22

基金资助

本文系北京市社会科学基金一般项目“基于多源异构用户行为数据的北京市平台型企业异质性及持续创新策略研究”(项目编号:22GLB028)研究成果之一。

Knowledge Deconstruction and Migration Path Identification from the Perspective of Dynamic Multilayer Networks

  • Wang Zongshui ,
  • Liu Wei ,
  • Zhao Hong ,
  • Sun Zhuo
Expand
  • 1 School of Economics and Management, Beijing Information Science and Technology University, Beijing 100192;
    2 Beijing Key Laboratory of Green Development and Decision Making Based on Big Data, Beijing 100190;
    3 School of Economics and Management, China University of Petroleum (Huadong), Qingdao 266580;
    4 School of Economics and Management, University of Chinese Academy of Sciences, Beijing 100190;
    5 School of Information Management, Zhengzhou University, Zhengzhou 450001

Received date: 2023-07-11

  Revised date: 2023-08-23

  Online published: 2023-12-22

摘要

[目的/意义]文献分析与社会网络分析是知识发现的重要方式,根据知识演化的动态性和层次性,提出一种基于动态多层网络的知识解构和迁移路径识别方法。[方法/过程]首先,通过等时间段划分、知识要素提取、知识网络构建与分层,确定分层网络结构;然后采用单层共有节点占比和Jaccard系数计算知识迁移跨度,采用辛普森多样性指数确定知识要素的重要性,并筛选出知识迁移的主要路径;在此基础上,对知识网络予以重构,明确知识要素间的内在逻辑。以2001—2021年信息管理领域的24种期刊的22 049篇文献为样本,以3年为间距划分为4个阶段,并采用CiteSpace软件进行关键词提取和初步统计,运用Pajek软件进行网络分层和基于重要路径的重构。[结果/结论]结果显示:近些年来,信息管理领域形成了以企业为核心的知识结构、以电子商务与用户行为为核心的知识结构和以信息技术与创新为核心的知识结构,信息技术是企业和用户间的重要连接。较聚类分析、时间拓展网络分析而言,所提出的方法不仅能够展示知识要素在知识迁移过程中的重要性,而且重构的网络所展示的知识要素模块及其内在关系逻辑更为具体明确。

本文引用格式

王宗水 , 刘苇 , 赵红 , 孙倬 . 动态多层网络视域下的知识解构与迁移路径识别[J]. 图书情报工作, 2023 , 67(23) : 111 -123 . DOI: 10.13266/j.issn.0252-3116.2023.23.010

Abstract

[Purpose/Significance] In-depth investigation of ceremonial activities and effective exploration of the paths and factors that affect librarians’ organizational identification can provide reference for the research and practice of library organizational management and activities. [Methods/Process] This paper selected 10 public libraries and university libraries in Yunnan province with outstanding performance in ceremonial activities, and 30 librarians from them as sample data for this study. Through in-depth interviews, it collected relative materials and analyzed sample data on grounded theory, and then built a new theoretical explanation framework. [Results/Conclusion] From the perspective of ceremonial practice, this paper deeply examines how library ceremonial activities affect librarians’ organizational identification. It shows that the components of library ritual activities include ceremonial performances, ceremonial landscapes, and ceremonial procedures. The group consensus will affect the ceremonial performance and the librarians’ self-identity under the identity recognition. The memory schema will affect ceremonial landscape and the librarians’ library identity under the scene interaction. The procedural rationality will affect the ceremonial program and the librarians’ value identity under the emotional cohesion. Librarians’ self-identity, library identity and value identity will jointly affect the librarians’ organizational identification.

参考文献

[1] 张成昱. 数字化文献的知识解构研究[J]. 中国图书馆学报, 2005(3): 32-36. (ZHANG C Y. Research on the knowledge deconstruction of digitized literatures[J]. Journal of library science in China, 2005(3): 32-36.)
[2] 王建亚, 马榕培, 周毅. 网络信息内容安全风险:特征、演变及场景要素解构[J]. 图书情报工作, 2022, 66(5): 13-23. (WANG J Y, MA R P, ZHOU Y. Characteristics, evolution and deconstruction of scene elements on security risks of network information content[J]. Library and information service, 2022, 66(5): 13-23.)
[3] 陈果, 赵以昕. 多因素驱动下的领域知识网络演化模型:跟风、守旧与创新[J]. 情报学报, 2020, 39(1): 1-11. (CHEN G, ZHAO Y X. A network evolution model for domain knowledge driven by multiple factors: following suit, conservatism, and innovation[J]. Journal of the China Society for Scientific and Technical Information, 2020, 39(1): 1-11.)
[4] 佟泽华, 韩春花, 刘晓婷, 等. 零知识协同行为模型的建构和解构[J]. 情报理论与实践, 2019, 42(3): 85-91. (TONG Z H, HAN C H, LIU X T, et al. Construction and deconstruction of zero-knowledge collaboration behavior model[J]. Information studies: theory & application, 2019, 42(3): 85-91.)
[5] 滕广青, 田依林, 董立丽, 等. 知识组织体系的解构与重构[J]. 情报理论与实践, 2011, 34(9): 15-18. (TENG G Q, TIAN Y L, DONG L L, et al. Deconstruction and reconstruction of knowledge organization system[J]. Information studies: theory & application, 2011, 34(9): 15-18.)
[6] 张夏恒, 李想. 框架解构与价值革新:面向信息资源管理的元宇宙剖析[J]. 图书馆建设, 2022(6): 123-128.(ZHANG X H, LI X. Framework deconstruction and value innovation: an analysis of the metaverse for information resource management[J]. Library development, 2022(6): 123-128.)
[7] WU C, YAN E, HILL C. Disciplinary knowledge diffusion in business research[J]. Journal of informetrics, 2017, 11(2): 655-668.
[8] 杜德慧, 李长玲, 相富钟, 等. 基于引文关键词的跨学科相关知识发现方法探讨[J]. 情报杂志, 2020, 39(9): 189-194. (DU D H, LI C L, XIANG F Z, et al. Discussion on the method of interdisciplinary related knowledge discovery based on citation keywords[J]. Journal of intelligence, 2020, 39(9): 189-194.)
[9] 赵红, 孙倬, 张莎, 等. 基于文献计量分析的社交商务研究脉络与热点演化[J]. 管理学报, 2019, 16(6): 923-931. (ZHAO H, SUN Z, ZHANG S, et al. The context and hotspot evolution of social commerce: a bibliometric approach[J]. Chinese journal of management, 2019, 16(6): 923-931.)
[10] 孙倬, 赵红, 王宗水. 网络舆情研究进展及其主题关联关系路径分析[J]. 图书情报工作, 2021, 65(7): 143-154. (SUN Z, ZHAO H, WANG Z S. Analysis on the association and evolution path of Internet public opinion[J]. Library and information service, 2021, 65(7): 143-154.)
[11] 王宗水, 刘海燕, 刘苇, 等. 基于时间拓展网络的知识发现与发展路径识别——以信息管理领域为例[J]. 情报学报, 2021, 40(9): 993-1003. (WANG Z S, LIU H Y, LIU W, et al. Knowledge discovery and development path identification based on time-expanded network: information management area as an example[J]. Journal of the China Society for Scientific and Technical Information, 2021, 40(9): 993-1003.)
[12] COLAVIZZA G, FRANCESCHET M. Clustering citation histories in the physical review[J]. Journal of informetrics, 2016, 10(4): 1037-1051.
[13] LIU X, JIANG T, MA F. Collective dynamics in knowledge networks: emerging trends analysis[J]. Journal of informetrics, 2013, 7(2): 425-438.
[14] BIANCONI G. Multilayer networks[M]. Oxford: Oxford University Press, 2018.
[15] BOCCALETTI S, BIANCONI G, CRIADO R, et al. The structure and dynamics of multilayer networks[J]. Physics reports, 2014, 544(1): 1-122.
[16] YANG Z, TELESFORD Q, FRANCO A, et al. Measurement reliability for individual differences in multilayer network dynamics: cautions and considerations[J]. NeuroImage, 2021, 225: 117489.
[17] WU J, PU C, LI L, et al. Traffic dynamics on multilayer networks[J]. Digital communications and networks, 2020, 6(1): 58-63.
[18] YASAMI Y. A new knowledge-based link recommendation approach using a non-parametric multilayer model of dynamic complex networks[J]. Knowledge-based systems, 2018, 143: 81-92.
[19] HAN J, TENG X, CAI X. A novel network optimization partner selection method based on collaborative and knowledge networks[J]. Information sciences, 2019, 484: 269-285.
[20] 曹志鹏, 潘定, 潘启亮. 基于表示学习的双层知识网络链路预测[J]. 情报学报, 2021, 40(2): 135-144. (CAO Z P, PAN D, PAN Q L, et al. Link prediction in two-layer knowledge network based on network representation learning[J]. Journal of the China Society for Scientific and Technical Information, 2021, 40(2): 135-144.)
[21] GUAN J, YAN Y, ZHANG J. The impact of collaboration and knowledge networks on citations[J]. Journal of informetrics, 2017, 11(2): 407-422.
[22] 廖晓, 李志宏, 席运江. 基于加权知识网络分析的企业社区创新用户专家知识发现方法[J]. 系统工程理论与实践, 2016, 36(5): 1268-1279. (LIAO X, LI Z, XI Y. Knowledge discovery methods on user-experts in enterprise virtual communities based on weighted knowledge network[J]. Systems engineering-theory & practice, 2016, 36(5): 1268-1279.)
[23] PARK I, YOON B. Technological opportunity discovery for technological convergence based on the prediction of technology knowledge flow in a citation network[J]. Journal of informetrics, 2018, 12(4): 1199-1222.
[24] WANG C, RODAN S, FRUIN M, et al. Knowledge networks, collaboration networks, and exploratory innovation[J]. Academy of management journal, 2014, 57(2): 484-514.
[25] ABBASI A. A longitudinal analysis of link formation on collaboration networks[J]. Journal of informetrics, 2016, 10(3): 685-692.
[26] RONDA-PUPO G, GUERRAS-MARTIN L. Collaboration network of knowledge creation and dissemination on management research: ranking the leading institutions[J]. Scientometrics, 2016, 107(3): 917-939.
[27] BILGIHAN A, BARREDA A, OKUMUS F, et al. Consumer perception of knowledge-sharing in travel-related online social networks[J]. Tourism management, 2016, 52: 287-296.
[28] VARSHNEY D, KUMAR S, GUPTA V. Predicting information diffusion probabilities in social networks: a Bayesian networks based approach[J]. Knowledge-based systems, 2017, 133: 66-76.
[29] 余传明, 李浩男, 安璐. 基于深度学习的领域知识对齐模型研究:知识网络视角[J]. 情报学报, 2020, 39(5): 521-533. (YU C M, LI H N, AN L. Research on domain knowledge alignment based on deep learning: knowledge network perspective[J]. Journal of the China Society for Scientific and Technical Information, 2020, 39(5): 521-533.)
[30] LIU W, WANG Z, ZHAO H. Comparative study of customer relationship management research from East Asia, North America and Europe: a bibliometric overview[J]. Electronic markets, 2020, 30(4): 735-757.
[31] 王宗水, 赵红, 刘宇, 等. 社会网络研究范式的演化、发展与应用——基于1998~2014年中国社会科学引文数据分析[J]. 情报学报, 2015, 34(12): 1235-1245. (WANG Z S, ZHAO H, LIU Y, et al. Evolution, development and application of social network paradigm: evidence from CSSCI database of China[J]. Journal of the China Society for Scientific and Technical Information, 2015, 34(12): 1235-1245.)
[32] 孟韬, 王维. 社会网络视角下的虚拟社区研究综述[J]. 情报科学, 2017, 35(3): 171-176. (MENG T, WANG W. A review of virtual community studies in the perspective of social network[J]. Information science, 2017, 35(3): 171-176.)
[33] GURZKI H, WOISETSCHLÄGER M. Mapping the luxury research landscape: a bibliometric citation analysis[J]. Journal of business research, 2017, 77: 147-166.
[34] 刘晓燕, 孙丽娜, 裘靖文, 等. 基于多层网络的人工智能领域跨界技术融合[J]. 复杂系统与复杂性科学, 2022, 19(1): 45-51. (LIU X Y, SUN L N, QIU J W, et al. Technological convergence of artificial intelligence based on multi-level networks[J]. Complex systems and complexity science, 2022, 19(1): 45-51.)
[35] 李守伟, 文世航, 王磊, 等. 多层网络视角下金融机构关联性的演化特征研究[J]. 中国管理科学, 2020, 28(12): 35-43. (LI S W, WEN S H, WANG L, et al. Evolution characteristics of financial institutions’ interrelationships from the perspective of multilayer network[J]. Chinese journal of management science, 2020, 28(12): 35-43.)
[36] JENSEN S, LIU X, YU Y, et al. Generation of topic evolution trees from heterogeneous bibliographic networks[J]. Journal of informetrics, 2016, 10(2): 606-621.
[37] 刘晓燕, 王晶, 单晓红, 等. 基于多层网络的创新网络节点间技术融合机理[J]. 科学学研究, 2019, 37(6): 1133-1141. (LIU X Y, WANG J, SHAN X H, et al. Technological convergence mechanisms of innovation network based on multi-level networks[J]. Studies in science of science, 2019, 37(6): 1133-1141.)
[38] CHEN Y, MO D. Community detection for multilayer weighted networks[J]. Information sciences, 2022, 595: 119-141.
[39] 潘俊, 吴宗大. 知识发现视角下词汇历时语义挖掘与可视化研究[J]. 情报学报, 2021, 40(10): 1052-1064. (PAN J, WU Z D. Diachronic semantic mining and visualization of Chinese words: a knowledge discovery perspective[J]. Journal of the China Society for Scientific and Technical Information, 2021, 40(10): 1052-1064.)
[40] ÓSKARSDÓTTIR M, BRAVO C. Multilayer network analysis for improved credit risk prediction[J]. Omega, 2021, 105: 102520.
[41] BAG S, KUMAR K, TIWARI K. An efficient recommendation generation using relevant Jaccard similarity[J]. Information sciences, 2019, 483: 53-64.
[42] KOENEMAN S, CAVANAUGH J. An improved asymptotic test for the Jaccard similarity index for binary data[J]. Statistics & probability letters, 2022, 184: 109375.
[43] 吴宗柠, 狄增如, 樊瑛. 多层网络的结构与功能研究进展[J]. 电子科技大学学报, 2021, 50(1): 106-120. (WU Z N, DI Z R, FAN Y. The structure and function of multilayer networks: progress and prospects[J]. Journal of University of Electronic Science and Technology of China, 2021, 50(1): 106-120.)
[44] BATTISTON F, NICOSIA V, LATORA V. Structural measures for multiplex networks[J]. Physical review e, 2014, 89(3): 032804.
[45] SIMPSON H. Measurement of Diversity[J]. Nature, 1949, 163(4148): 688.
[46] 陈悦, 陈超美, 胡志刚, 等.引文空间分析原理与应用[M]. 北京: 科学出版社, 2014. (CHEN Y, CHEN C M, HU Z G, et al. Principles and applications of analyzing a citation space[M]. Beijing: Science Press, 2014.)
[47] DE NOOY W, MRVAR A, BATAGELJ V. Exploratory social network analysis with Pajek: revised and expanded edition for updated software[M]. Cambridge: Cambridge University Press, 2018.
[48] CLAUSET A, NEWMAN E, MOORE C. Finding community structure in very large networks[J]. Physical review e, 2004, 70(6): 066111.
[49] DHUNGANA D, HASELBOECK A, MEIXNER S, et al. Multi-factory production planning using edge computing and IIoT platforms[J]. Journal of systems and software, 2021, 182: 111083.
[50] CETINDAMAR D, SHDIFAT B, ERFANI E. Understanding big data analytics capability and sustainable supply chains[J]. Information systems management, 2022, 39(1): 19-33.
[51] ZHANG A, CHEN Y, XU X, et al. Impacts of resource alertness and change leadership style on financial performance: an empirical study[J]. Journal of global information management, 2021, 29(2): 45-60.
[52] ADABA B, WILSON W, SIMS J. The impact of national culture on strategic IT alignment: a multiple-case study of subsidiaries of multinational corporations[J]. Information systems management, 2022, 39(4): 288-304.
[53] KARHADE P, DONG J. Information technology investment and commercialized innovation performance: dynamic adjustment costs and curvilinear impacts[J]. MIS quarterly, 2021, 45(3): 1007-1024.
[54] AALTONEN A, ALAIMO C, KALLINIKOS J. The making of data commodities: data analytics as an embedded process[J]. Journal of management information systems, 2021, 38(2): 401-429.
[55] CHENG X, HOU T, MOU J. Investigating perceived risks and benefits of information privacy disclosure in IT-enabled ride-sharing[J]. Information & management, 2021, 58(6): 103450.
[56] RIAZ M, GUANG L, ZAFAR M, et al. Consumers’ purchase intention and decision-making process through social networking sites: a social commerce construct[J]. Behaviour & information technology, 2021, 40(1): 99-115.
[57] BAKER E, HUBONA G, SRITE M. Does “Being There” matter? the impact of web-based and virtual world’s shopping experiences on consumer purchase attitudes[J]. Information & management, 2019, 56(7): 103153.
[58] BARNES S J. Understanding the overvaluation of facial trustworthiness in Airbnb host images[J]. International journal of information management, 2021, 56: 102265.
[59] CHANGCHIT C, CUTSHALL R, PHAM A. personality and demographic characteristics influence on consumers’ social commerce preference[J]. Journal of computer information systems, 2022, 62(1): 98-108.
[60] ABUBAKRE M, MKANSI M. How do technologists do ICT for development? a contextualised perspective on ICT4D in South Africa[J]. European journal of information systems, 2022, 31(1): 7-24.
[61] CANHOTO I, QUINTON S, PERA R, et al. Digital strategy aligning in SMEs: a dynamic capabilities perspective[J]. Journal of strategic information systems, 2021, 30(3): 101682.
[62] ADDAZI L, CICCOZZI F. Blended graphical and textual modelling for UML profiles: a proof-of-concept implementation and experiment[J]. Journal of systems and software, 2021, 175: 110912.
[63] DONG J, YANG C. Information technology and innovation outcomes: is knowledge recombination the missing link?[J]. European journal of information systems, 2019, 28(6): 612-626.
[64] BACON E, WILLIAMS D, DAVIES H. Recipes for success: conditions for knowledge transfer across open innovation ecosystems[J]. International journal of information management, 2019, 49: 377-387.
[65] DENG C, WANG T, TEO H, et al. Organizational agility through outsourcing: roles of IT alignment, cloud computing and knowledge transfer[J]. International journal of information management, 2021, 60: 102385.
[66] ANDRADE-ROJAS G, KATHURIA A, KONSYNSKI R. Competitive brokerage: how information management capability and collaboration networks act as substitutes[J]. Journal of management information systems, 2021, 38(3): 667-703.
[67] ACHARYA C, OJHA D, GOKHALE R, et al. Managing information for innovation using knowledge integration capability: the role of boundary spanning objects[J]. International journal of information management, 2022, 62: 102438.
[68] DU J, LI P, GUO Q, et al. Measuring the knowledge translation and convergence in pharmaceutical innovation by funding-science-technology-innovation linkages analysis[J]. Journal of informetrics, 2019, 13(1): 132-148.
文章导航

/