[1] 袁立科. 国家关键技术选择与技术预测40年回顾与思考[J]. 中国科技论坛, 2022, 38(12): 25-34. (YUAN L K. Retrospective review of 40 years of national critical technologies selection and technology foresight[J]. Forum on science and technology in China, 2022, 38(12): 25-34.)
[2] WANG J, ZHANG Z, LIU P. Development of technology opportunity analysis based on technology landscape by extending technology elements with BERT and TRIZ[J]. Technological forecasting and social change, 2023, 191(6): 122481.
[3] EBADI A, AUGER A, GAUTHIER Y. Detecting emerging technologies and their evolution using deep learning and weak signal analysis[J]. Journal of informetrics, 2022, 16(11): 101344.
[4] 李长玲, 高峰, 牌艳欣. 试论跨学科潜在知识生长点及其识别方法[J]. 科学学研究, 2021, 39(6): 1007-1014. (LI C L, GAO F, PAI Y X. Research on potential interdisciplinary knowledge growth points and its identification methods[J]. Studies in science of science, 2021, 39(6): 1007-1014.)
[5] 许海云, 刘亚辉, 罗瑞. 突破性科学创新早期识别研究综述[J]. 情报理论与实践, 2021, 44(4): 198-205. (XU H Y, LIU Y H, LUO R. A Review on early identification of science breakthrough[J]. Information studies: theory & application, 2021, 44(4): 198-205.)
[6] 蒋永福. 基础理论研究中两个新的生长点:知识自由和信息公平[J]. 中国图书馆学报, 2008(2): 80-81, 73. (JIANG Y F. Two new growth points in basic theoretical research: knowledge freedom and information fairness[J]. Journal of library science in China, 2008(2): 80-81, 73.)
[7] 张道民. 试论科学生长点[J]. 科学、技术与辩证法, 1986(1): 1-7. (ZHANG D M. On the growth point of science[J]. Studies in philosophy of science and technology, 1986(1): 1-7.)
[8] 于文强, 陈宗民. 工程材料与热成形技术[M]. 北京: 机械工业出版社, 2020. (YU W Q, CHEN Z M. Engineering materials and hot forming technology[M]. Beijing: China Machine Press, 2020.)
[9] HAN X, ZHU D, QIAO Y. Technology opportunity analysis: combining SAO networks and link prediction[J]. IEEE transactions on engineering management, 2021, 68(5): 1288-1298.
[10] 杨竞衡. 机电一体化一些新的技术生长点[J]. 自动化与仪表, 1994(2): 18-21. (YANG J H. Some new technological growth points in mechatronics integration[J]. Automation & instrumentation, 1994(2): 18-21.)
[11] SERCAN O, HOMAYOUNFARD A, CHRISTOPHER S, et al. Technology roadmapping using text mining: a foresight study for the retail industry[J]. IEEE transactions on engineering management, 2022, 69(1): 228-244.
[12] 师昌绪. 材料科学技术的生长点[J]. 材料科学进展, 1990(2): 97-104. (SHI C Z. The frontiers of materials science and technology[J]. Chinese journal of materials research, 1990(2): 97-104.)
[13] CURRAN C, LEKER J. Patent indicators for monitoring convergence–examples from NFF and ICT[J]. Technological forecasting and social change, 2011, 78(2): 256-273.
[14] KARVONEN M, KÄSSI T. Patent citations as a tool for analysing the early stages of convergence[J]. Technological forecasting and social change, 2013, 80(6): 1094-1107.
[15] UZZI B, MUKHERJEE S, STRINGER M, et al. Atypical combinations and scientific impact[J]. Science, 2013, 342(6157): 468-472.
[16] HOFSTRA B, KULKARNI V V, GALVEZ S M, et al. The diversity–innovation paradox in science[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(17): 9284-9291.
[17] LIN Y, EVANS J A, WU L. New directions in science emerge from disconnection and discord[J]. Journal of informetrics, 2022, 16(1): 101234.
[18] DOTSIKA F, WATKINS A. Identifying potentially disruptive trends by means of keyword network analysis[J]. Technological forecasting and social change, 2017, 119(6): 114-127.
[19] ZHOU J, LI P, MENG L. Toward new-generation intelligent manufacturing[J]. Engineering, 2018, 4(4): 11-20.
[20] ROTOLO D, HICKS D, MARTIN-BEN R. What is an emerging technology?[J]. Research policy, 2015, 44(10): 1827-1843.
[21] 邓建军, 刘安蓉, 曹晓阳, 等. 颠覆性技术早期识别方法框架研究——基于科学端的视角[J]. 中国科学院院刊, 2022, 37(5): 674-684. (DENG J J, LIU A R, CAO X Y, et al. Methodological framework of identifying disruptive technologies on emerging stage: based on science[J]. Bulletin of Chinese Academy of Sciences, 2022, 37(5): 674-684.)
[22] 邢晓昭, 任亮, 雷孝平, 等. 基于专利主题演化的颠覆性技术识别研究——以类脑智能领域为例[J]. 情报科学, 2023, 41(3): 81-88. (XING X S, REN L, LEI X P, et al. The identification of disruptive technology based on patent theme evolution: taking the field of brain-inspired intelligence as an example[J]. Information science, 2023, 41(3): 81-88.)
[23] 吴可凡, 王伟, 张世玉, 等. 技术不连续性视角下颠覆性技术识别方法研究[J]. 情报理论与实践, 2022, 45(10): 125-131. (WU K F, WANG W, ZHANG S Y. Research on disruptive technology identification methods from the perspective of technological discontinuity[J]. Information studies: theory & application, 2022, 45(10): 125-131.)
[24] 中国人民共和国国务院. 国家中长期科学和技术发展规划纲要[EB/OL]. [2023-09-16]. http://www.gov.cn/jrzg/2006-02/09/content_183787.htm. (State Council of the People’s republic. Outline of the national medium and long term science and technology development plan [EB/OL] [2023-09-16] http://www.gov.cn/jrzg/2006-02/09/content_183787.htm.)
[25] KLEVORICK A K, LEVIN R C, WINTER S G. On the sources and significance of interindustry differences in technological opportunities[J]. Research policy, 1995, 24: 185-205.
[26] OLSSON O. Technological opportunity and growth[J]. Journal of economic growth, 2005, 10(1): 31-53.
[27] LEE S, YOON B, PARK Y. An approach to discovering new technology opportunities: keyword-based patent map approach[J]. Technovation, 2009, 29(6): 481-497.
[28] YOON B, PARK Y. A systematic approach for identifying technology opportunities: keyword-based morphology analysis[J]. Technological forecasting and social change, 2005, 72(2): 145-160.
[29] 王静静. 基于论文和专利的技术机会分析[D]. 北京: 北京工业大学, 2016. (WANG J J. Analysis of technological opportunities based on papers and patents[D]. Beijing: Beijing University of Technology, 2016.)
[30] 翟东升, 刘鹤, 张杰, 等. 一种基于链路预测的技术机会挖掘方法[J]. 情报学报, 2016, 35(10): 1090-1100. (ZHAI D S, LIU H, ZHANG J. Approach to mining technology opportunity based on link prediction[J]. Journal of the China Society for Scientific and Technical Information, 2016, 35(10): 1090-1100.)
[31] 王敏, 银路. 技术演化的集成研究及新兴技术演化[J]. 科学学研究, 2008, 26(3): 466-471. (WANG M, YIN L. An integrated study on technology evolution and its new research focus - evolution of emerging technology[J]. Studies in science of science, 2008, 26(3): 466-471.)
[32] BART V. Mapping technological trajectories as patent citation networks: a study on the history of fuel cell research[J]. Advances in complex systems, 2007, 10(1): 93-115.
[33] 黄颖, 叶冬梅, 丁凤, 等. 技术演化路径识别:内涵释义与研究进展[J]. 图书情报工作, 2022, 66(22): 142-154. (HUANG Y, YE D M, DING F. Identification of technology evolution pathway: connotation interpretation an research progress[J]. Library and information service, 2022, 66(22): 142-154.)
[34] 卢希谦, 李恩昌. 关于学科生长点[J]. 山东医科大学学报(社会科学版), 1995, 9(3): 46-50. (LU X Q, LI E C. On the growth points of the discipline[J]. Journal of Shandong Medical University (social sciences edition), 1995, 9(3): 46-50.)
[35] HACKLIN F, MARXT C, FAHRNI F. Coevolutionary cycles of convergence: an extrapolation from the ICT industry[J]. Technological forecasting and social change, 2009, 76(6): 723-736.
[36] 李昌, 周锦锦, 杨中楷. 动态演化过程视角下技术融合生长点识别研究[J]. 图书情报工作, 2022, 66(7): 99-109. (LI C, ZHOU J J, YANG Z K. Research on technological convergence growth point identification from the perspective of dynamic evolution process[J]. Library and information service, 2022, 66(7): 99-109.)
[37] NOH H, SONG Y, LEE S. Identifying emerging core technologies for the future: case study of patents published by leading telecommunication organizations[J]. Telecommunications policy, 2016, 40(10): 956-970.
[38] SONG H, HOU J, ZHANG Y. The measurements and determinants of patent technological value: lifetime, strength, breadth, and dispersion from the technology diffusion perspective[J]. Journal of informetrics, 2023, 17(1): 101370.
[39] BREITZMAN A, THOMAS P. The emerging clusters model: a tool for identifying emerging technologies across multiple patent systems[J]. Research policy, 2015, 44(1): 195.
[40] CHOI Y M, CHO D. A study on the time-dependent changes of the intensities of factors determining patent lifespan from a biological perspective[J]. World patent information, 2018, 54(9): 1-17.
[41] 杨冠灿, 丁月, 徐硕, 等. 基于专利动态指标的新兴技术预测建模方法——以癌症药物领域为例[J]. 情报学报, 2022, 41(8): 786-795. (YANG G C, DING Y, XU S, et al. A novel modeling method for predicting emerging technologies based on patent dynamic indicators: taking the field of cancer drugs as an example[J]. Journal of the China Society for Scientific and Technical Information, 2022, 41(8): 786-795.)
[42] 李昌, 杨中楷, 董坤. 基于多维属性动态变化特征的新兴技术识别研究[J]. 情报学报, 2022, 41(5): 463-474. (LI C, YANG Z K, DONG K. Recognition of emerging technologies based on dynamic characteristics of multi-dimensional attributes[J]. Journal of the China Society for Scientific and Technical Information, 2022, 41(5): 463-474.)
[43] PORTER A, GARNER J, CARLEY S, et al. Emergence scoring to identify frontier R&D topics and key players[J]. Technological forecasting and social change, 2019, 149(9): 628-643.
[44] 李宏宽, 何海燕, 单捷飞, 等. 特征分析视角下半导体制造产业关键技术分布研究[J]. 中国科技论坛, 2019, 35(6): 80-94. (LI H K, HE H Y, SHAN J F, et al. Research on the distribution of key technologies in the semiconductor manufacturing industry from the perspective of feature analysis[J]. Forum on science and technology in China, 2019, 35(6): 80-94.)
[45] 张雪, 张志强, 曹玲静, 等. 学科领域研究前沿识别方法研究进展[J]. 图书情报工作, 2022, 66(12): 139-151. (ZHANG X, ZHANG Z Q, CAO L J, et al. Research progress of research front recognition methods in subject field[J]. Library and information service, 2022, 66(12): 139-151.)
[46] 张凤娟, 曲鑫. 电子语言素养——信息技术与外语课程整合的生长点[J]. 情报科学, 2013, 31(2): 110-114. (ZHANG F J, QU X. Electronic language literacy: the growth point of the integration of information technology and foreign language curriculum[J]. Information science, 2013, 31(2): 110-114.)
[47] YOON B, MAGEE C L. Exploring technology opportunities by visualizing patent information based on generative topographic mapping and link prediction[J]. Technological forecasting and social change, 2018, 132(7): 105.
[48] XU H, WINNINK J, YUAN G. Topic-linked innovation paths in science and technology[J]. Journal of informetrics, 2020, 14(2): 101014.
[49] 荣国阳, 李长玲, 范晴晴, 等. 基于生命周期理论的跨学科知识生长点识别——以引文分析领域为例[J]. 情报理论与实践, 2022, 45(6): 9-16. (RONG G Y, LI C L, FAN Q Q, et al. Identification of interdisciplinary knowledge growth points based on life cycle theory: take the field of citation analysis as an example[J]. Information studies: theory & application, 2022, 45(6): 9-16.)
[50] 李长玲, 范晴晴, 荣国阳, 等. 动能理论视角下跨学科知识生长点成长态势分析——以图书情报领域为例[J]. 情报理论与实践, 2023, 46(3): 9-15. (LI C L, FAN Q Q, RONG G Y, et al. Analysis of the growth trend of interdisciplinary knowledge growth points from the perspective of kinetic energy theory[J]. Information studies: theory & application, 2023, 46(3): 9-15.)
[51] WINNINK J J, TIJSSEN R J W. Early stage identification of breakthroughs at the interface of science and technology: lessons drawn from a landmark publication[J]. Scientometrics, 2015, 102(1): 113-134.
[52] 曹志鹏, 潘定, 潘启亮. 基于表示学习的双层知识网络链路预测[J]. 情报学报, 2021, 40(2): 135-144. (CAO Z P, PAN D, PAN Q L. Two-layer knowledge network link prediction based on representation learning[J]. Journal of the China Society for Scientific and Technical Information, 2021, 40(2): 135-144.)
[53] REN H, ZHAO Y. Technology opportunity discovery based on constructing, evaluating, and searching knowledge networks[J]. Technovation, 2021, 101(3): 102196.
[54] LUO Z, LU W, WANG Y. Combination of research questions and methods: a new measurement of scientific novelty[J]. Journal of informetrics, 2022, 16(2): 101282.
[55] VEEN B L V, ORTT J R. Unifying weak signals definitions to improve construct understanding[J]. Futures, 2021, 134(12): 102837.
[56] 张金柱, 张晓林. 利用引用科学知识突变识别突破性创新[J]. 情报学报, 2014, 33(3): 259-266. (ZHANG J Z, ZHANG X L. Identification of radical innovaiton based on mutation of cited scientific knowledge[J]. Journal of the China Society for Scientific and Technical Information, 2014, 33(3): 259-266.)
[57] 刘亚辉, 许海云. 突破性创新早期识别与弱信号分析综述[J]. 图书情报工作, 2021, 65(4): 89-101. (LIU Y H, XU H Y. A review of early recognition of breakthrough innovations and the weak signal analysis[J]. Library and information service, 2021, 65(4): 89-101.)
[58] MIAO H, GUO X, YUAN F. Research on identification of potential directions of artificial[J]. IEEE transactions on engineering management, 2021, 1: 1-16.
[59] MEISSNER P, BRANDS C, WULF T. Quantifiying blind spots and weak signals in executive judgment: a structured integration of expert judgment into the scenario development process[J]. International journal of forecasting, 2017, 33(1): 157-170.
[60] 邓胜利, 林艳青, 王野. 企业竞争弱信号的特征提取与定量识别研究[J]. 图书情报工作, 2016, 60(10): 67-75. (DENG S L, LIN Y J, WANG Y. Research on feature extraction and quantitative recognition of weak signals in enterprise competition[J]. Library and information service, 2016, 60(10): 67-75.)
[61] SCHEFFER M, BASCOMPTE J, BROCK W A, et al. Early-warning signals for critical transitions[J]. Nature, 2009, 461(7260): 53-59.
[62] YU M, PASMAN H, KRAVARIS C. A framework to identify and respond to weak signals of disastrous process incidents based on FRAM and machine learning techniques[J]. Process safety and environmental protection, 2022, 158(2): 98-114.
[63] CHEN L S, CHEN S H. Using TRIZ techniques to new product function development of smart phones[J]. Industrial engineering and management systems, 2011, 10(3): 179-184.
[64] KASHANI E S, ROSHANI S. Evolution of innovation system literature: intellectual bases and emerging trends[J]. Technological forecasting and social change, 2019, 146(9): 68-80.
[65] CHECHURIN L, BORGIANNI Y. Understanding TRIZ through the review of top cited publications[J]. Computers in industry, 2016, 82(10): 119-134.
[66] BERG S, WUSTMANS M, BRÖRING S. Identifying first signals of emerging dominance in a technological innovation system: a novel approach based on patents[J]. Technological forecasting and social change, 2019, 146(9): 706-722.
[67] YUN S, CHO W, LEE S. Technological trend mining: identifying new technology opportunities using patent semantic analysis[J]. Information processing & management, 2022, 59(4): 102993.
[68] LI X, XIE Q, HUANG L. Forecasting technology trends using text mining of the gaps between science and technology: the case of perovskite solar cell technology[J]. Technological forecasting and social change, 2019, 146(9): 432-449.
[69] KIM J, KIM S, LEE C. Anticipating technological convergence: link prediction using Wikipedia hyperlinks[J]. Technovation, 2019, 79(1): 25-34.
[70] ZHOU Y, DONG F, LIU Y. Unfolding the convergence process of scientific knowledge for the early identification of emerging technologies[J]. Technological forecasting and seocial change, 2019, 144(7): 205-220.
[71] HACKLIN F, BORIS B, KROGH G V. Strategic choices in converging industries[J]. MIT Sloan management review, 2013, 55(1): 65-73.
[72] JEONG S, LEE S. What drives technology convergence? exploring the influence of technological and resource allocation contexts[J]. Journal of engineering and technology management, 2015, 36(4): 78-96.
[73] LEE C, HONG S, KIM J. Anticipating multi-technology convergence: a machine learning approach using patent information[J]. Scientometrics, 2021, 126(3): 1867-1896.
[74] KONG D, YANG J, LI L. Early identification of technological convergence in numerical control machine tool: a deep learning approach[J]. Scientometrics, 2020, 125(3): 1983-2009.
[75] 中国大百科全书总编辑委员会. 中国大百科全书图书馆学·情报学·档案学[M]. 北京: 中国大百科全书出版社, 1998: 18-19. (Editorial committee of the Chinese encyclopedia. Encyclopedia of China library science. information science. archival science [M]. Beijing: China Encyclopedia Publishing House, 1998: 18-19.)