[1] LEVIN R C. A new look at the patent system[J]. The American economic review, 1986, 76(2):199-202.
[2] ZHA X, CHEN M. Study on early warning of competitive technical intelligence based on the patent map[J]. Journal of computers, 2010, 5(2):274-281.
[3] PORTER A, CUNNINGHAM S. Tech mining:exploiting new technologies for competitive advantage[M]. Hoboken:John Wiley&Sons, 2004.
[4] 胡正银,方曙.专利文本技术挖掘研究进展综述[J].现代图书情报技术, 2014, 30(6):62-70.(HU Z Y, FANG S. Review on text-based patent technology mining[J]. New technology of library and information service, 2014, 30(6):62-70.)
[5] 屈鹏,张均胜,曾文,等.国内外专利挖掘研究(2005-2014)综述[J].图书情报工作, 2014, 58(20):131-137.(QU P, ZHANG J S, ZENG W, et al. A review of patent mining studies in China and abroad 2005-2014[J]. Library and information service, 2014, 58(20):131-137.)
[6] ZHANG L, LI L, LI T. Patent mining:a survey[J]. ACM sigkdd explorations newsletter, 2015, 16(2):1-19.
[7] 马天旗,赵强,苏丹,等.专利挖掘(第2版)[M].北京:知识产权出版社, 2020.(MA T, ZHAO Q, SU D, et al. Patent mining (2nd edition)[M]. Beijing:Intellectual Property Publishing Hourse, 2020.)
[8] HALL B H, JAFFE A B, TRAJTENBERG M. The NBER patent citation data file:lessons, insights and methodological tools[EB/OL].[2023-11-28]. https://www.nber.org/system/files/working_papers/w8498/w8498.pdf.
[9] RICHARD M. Technical documentation for the 2019 patent examination research dataset (PatEx) release[EB/OL].[2023-11-28]. https://www.uspto.gov/sites/default/files/documents/PatEx-2019-Technical-Doc.pdf.
[10] TRAPPEY A J C, TRAPPEY C V, WU J L, et al. Intelligent compilation of patent summaries using machine learning and natural language processing techniques[J]. Advanced engineering informatics, 2020, 43:101027.
[11] USPTO. USPTO-2M[EB/OL].[2023-11-28]. https://github.com/JasonHoou/USPTO-2M.
[12] 北京大学开放研究数据平台.发明专利数据[EB/OL].[2023-11-28]. https://opendata.pku.edu.cn/dataset. xhtml?persistentId=doi:10.18170/DVN/ASRTHL.(Peking University open research data. Invention patent data[EB/OL].[2023-11-28]. https://opendata.pku.edu.cn/dataset. xhtml?persistentId=doi:10.18170/DVN/ASRTHL.)
[13] NTCIR. NTCIR-7 PATMT (Patent translation test collection)[EB/OL].[2023-11-26]. http://research.nii.ac.jp/ntcir/permission/ntcir-7/perm-en-PATMT.html.
[14] NTCIR. NTCIR-8 PATMT (Patent translation) Research purpose use of test collection[EB/OL].[2023-11-26]. http://research.nii.ac.jp/ntcir/permission/ntcir-8/perm-en-PATMT.html.
[15] SHARMA E, LI C, WANG L. Bigpatent:a large-scale dataset for abstractive and coherent summarization[J]. arXiv preprint arXiv:1906.03741, 2019.
[16] Vienna University of Technology. MAREC[EB/OL].[2023-11-26]. https://www.ifs.tuwien.ac.at/imp/marec.shtml.
[17] USPTO. Patent trial and appeal board (PTAB) API[EB/OL].[2023-11-26]. https://uspto.data.commerce.gov/dataset/PatentTrial-and-Appeal-Board-PTAB-API/nfzn-tgjt/data.
[18] ZHU J, KAPLAN R, JOHNSON J, et al. HiDDeN:hiding data with deep networks[J]. arXiv preprint arXiv:1807.09937, 2018.
[19] 蔡莉,王淑婷,刘俊晖,等.数据标注研究综述[J].软件学报, 2020, 31(2):302-320.(CAI L, WANG S T, LIU J H, et al. Survey of data annotation[J]. Journal of software, 2020, 31(2):302-320.)
[20] NTCIR Project test collections-DATA[EB/OL].[2023-11-26]. http://research.nii.ac.jp/ntcir/permission/data-en.htm.
[21] CLEF-IP 2009 download area[EB/OL].[2023-11-26]. http://www.ifs.tuwien.ac.at/~clef-ip/download/2009/index.shtml#data.
[22] CLEF-IP 2010 download area[EB/OL].[2023-11-26]. http://www.ifs.tuwien.ac.at/~clef-ip/download/2010/index.shtml.
[23] CLEF-IP 2012 download area[EB/OL].[2023-11-26]. http://www.ifs.tuwien.ac.at/~clef-ip/download/2012/index.shtml.
[24] CLEF-IP 2011 download area[EB/OL].[2023-11-26]. http://www.ifs.tuwien.ac.at/~clef-ip/download/2011/index.shtml.
[25] GOBEILL J, TEODORO D, PASCHE E, et al. Report on the TREC 2009 experiments:chemical IR track[EB/OL].[2023-11-28]. http://bitem.hesge.ch/sites/default/files/biblio/Report_on_the_trec_2009_experiments_Chem.pdf.
[26] LUPU M, TAIT J, HUANG J, et al. Trec-chem 2010:notebook report[EB/OL].[2023-11-28]. https://trec.nist.gov/pubs/trec19/papers/CHEM.OVERVIEW.pdf.
[27] LUPU M, ZHAO J, HUANG J, et al. Overview of the TREC 2011 Chemical IR Track[EB/OL].[2023-11-28]. https://trec.nist.gov/pubs/trec20/papers/CHEM.OVERVIEW.pdf.
[28] NTCIR-8 PATMT (patent translation) research purpose use of test collection[EB/OL].[2023-11-26]. http://research.nii.ac.jp/ntcir/permission/ntcir-8/perm-en-PATMT.html.
[29] CHEN L, XU S, ZHU L, et al. A deep learning based method for extracting semantic information from patent documents[J]. Scientometrics, 2020, 125(1):289-312.
[30] Track 2-CHEMDNER-patents[EB/OL].[2023-11-26]. https://biocreative.bioinformatics.udel.edu/tasks/biocreative-v/track-2-chemdner/.
[31] AKHONDI S A, KLENNER A G, TYRCHAN C, et al. Annotated chemical patent corpus:a gold standard for text mining[J]. Plos one, 2014, 9(9):e107477.
[32] HE J, NGUYEN D Q, AKHONDI S A, et al. Overview of ChEMU 2020:named entity recognition and event extraction of chemical reactions from patents[C]//Experimental IR meets multilinguality, multimodality, and interaction:11th international conference of the CLEF Association. Heidelberg:Springer, 2020:237-254.
[33] LI Y, FANG B, HE J, et al. Extended overview of ChEMU 2021:reaction reference resolution and anaphora resolution in chemical patents[C]//Experimental IR meets multilinguality, multimodality, and interaction. Heidelberg:Springer, 2021:292-307.
[34] CLEF-IP 2013 download area[EB/OL].[2023-11-26]. http://www.ifs.tuwien.ac.at/~clef-ip/download/2013/index.shtml.
[35] ASLANYAN G, Wetherbee I. Patents phrase to phrase semantic matching dataset[J]. arXiv preprint arXiv:2208.01171, 2022.
[36] RISCH J, ALDER N, HEWEL C, et al. PatentMatch:a dataset for matching patent claims&prior art[J]. arXiv preprint arXiv:2012.13919, 2020.
[37] FRUMKIN J, MYERS A. Cancer moonshot patent data (August, 2016)[EB/OL].[2023-11-26]. https://bulkdata.uspto.gov/data/patent/cancer/moonshot/2016/cancer_patent_data_doc_v15. Docx.
[38] HUNT D, NGUYEN L, RODGERS M. Patent searching:tools&techniques[M]. Hoboken:John Wiley&Sons, 2012.
[39] NTCIR. NTCIR (NII Testbeds and community for information access research) project[EB/OL].[2023-11-26]. http://research.nii.ac.jp/ntcir/index-en.html.
[40] CLEF-Initiative. The CLEF Initiative conference and labs of the evaluation forum[EB/OL].[2023-11-26]. http://www.clefinitiative.eu/.
[41] LUPU M, HUANG J, ZHU J, et al. TREC-CHEM:large scale chemical information retrieval evaluation at TREC[C]//ACM SIGIR forum. New York:ACM, 2009, 43(2):63-70.
[42] ACM. SIGIR:special interest group on information retrieval[EB/OL].[2023-11-26]. https://www.acm.org/special-interest-groups/sigs/sigir.
[43] CLEF-Initiative. CLEF-IP image tasks guidelines[EB/OL].[2023-11-26]. http://www.ifs.tuwien.ac.at/~clef-ip/download/2011/docs/CLEF-IP2011-IMG_tasks_guidelines.pdf.
[44] CLEF-Initiative. CLEF-IP 2013 download area[EB/OL].[2023-11-26]. http://www.ifs.tuwien.ac.at/~clef-ip/download/2013/index.shtml.
[45] MIKOLOV T, SUTSKEVER I, CHEN K, et al. Distributed representations of words and phrases and their compositionality[EB/OL].[2023-11-26]. https://proceedings.neurips.cc/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf.
[46] RISCH J, KRESTEL R. Domain-specific word embeddings for patent classification[J]. Data technologies and applications, 2019, 53(1):108-122.
[47] Google. BERT for patents[EB/OL].[2023-11-26]. https://github.com/google/patents-public-data/blob/master/models/BERT% 20 for% 20Patents.md.
[48] 陈亮,张吉玉,刘一畅,等.[三等奖方案]小样本数据分类任务赛题[复兴15号]团队解题思路[EB/OL].[2023-11-26]. https://mp.weixin.qq.com/s/dPWnm4OkxQLhAc-2uqSSUQ (CHEN L, ZHANG J Y, LIU Y C, et al.[Third Prize] Small sample data classification task[Fuxing No.15] Team problem solving ideas[EB/OL].[2023-11-26]. https://mp.weixin.qq.com/s/dPWnm4OkxQLhAc-2uqSSUQ.)
[49] LEE J S. Evaluating generative patent language models[J]. World patent information, 2023, 72:102173.
[50] 陈亮.基于关联规则改进的技术演化分析方法研究[D].北京:中国科学院大学, 2013.(CHEN L. An improved method of technological evolution analysis based on improved association rules[D]. Beijing:University of Chinese Academy of Sciences, 2013)
[51] VIVALDI J, CABRERA-DIEGO L A, SIERRA G, et al. Using Wikipedia to validate the terminology found in a corpus of basic textbooks[EB/OL].[2023-11-26]. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=30b3efe82d97b6974c0a11d0750d994723826954.
[52] 张雪,孙宏宇,辛东兴,等.自动术语抽取研究综述[J].软件学报, 2020, 31(7):2062-2094.(ZHANG X, SUN H Y, XIN D X, et al. Survey on automatic term extraction research[J]. Journal of software, 2020, 31(7):2062-2094)
[53] DEWULF S. Directed variation of properties for new or improved function product DNA, a base for connect and develop[J]. Procedia engineering, 2011(9):646-652.
[54] YOON J, KIM K. Trend perceptor:a property-function based technology intelligence system for identifying technology trends from patents[J]. Expert system with application, 2012, 39(3):2927-2938.
[55] YOON J, KO N, KIM J. A function-based knowledge base for technology intelligence[J]. Industrial engineering&management systems. 2015, 14(1):73-87.
[56] EVANS D A, LEFFERTS R G. Clarit-TREC experiments[J]. Information processing and management, 1995, 31(3):385-395.
[57] FRANTZI K, ANANIADOU S, MIMA H. Automatic recognition of multi-word terms[J]. International journal of digital libraries, 2000, 3(2):117-132.
[58] 陈亮,张志强.一种基于专利文本的技术系统构成识别方法[J].图书情报工作, 2014, 58(10):134-137, 144.(CHEN L, ZHANG Z Q. Method of recognizing technological architecture component based on patent documents[J]. Library and information service, 2014, 58(10):134-137, 144.)
[59] 陈亮,张静,杨冠灿,等.基于专利文本的闭频繁项集在技术演化分析中的应用[J].图书情报工作, 2016, 60(6):70-76.(CHEN L, ZHANG J, YANG G C, et al. The application of closed frequent item sets on patent text for technological evolution analysis[J]. Library and information service, 2016, 60(6):70-76.)
[60] WU W, LIU T, HU H, et al. Extracting domain-relevant term using Wikipedia based on random walk model[C]//Proceeding of 2012 seventh China grid annual conference. Rosten:IEEE, 2012:68-75.
[61] JUDEA A, SCHÜTZE H, BRÜGMANN S. Unsupervised training set generation for automatic acquisition of technical terminology in patents[C]//Proceedings of the 25th international conference on computational linguistics. Stroudsburg:ACL, 2014:290-300.
[62] BOLSHAKOVA E, LOUKACHEVITCH N, NOKEL M. Topic models can improve domain term extraction[C]//European conference on information retrieval. Heidelberg:Springer, 2013:684-687.
[63] WANG R, LIU W, MCDONALD C. Featureless domain-specific term extraction with minimal labelled data[C]//Proceedings of the Australasian Language Technology Association workshop 2016. Stroudsburg:ACL, 2016:103-112.
[64] The Stanford natural language processing group. Stanford named entity recognizer (NER)[EB/OL].[2023-11-18]. http://nlp. stanford.edu/software/CRF-NER.shtml.
[65] GRANT I, THOMAS M, ANDREW F, et al. Taming text:how to find, organize and manipulate it[M]. Greenwich:Manning Publications, 2015.
[66] YANG S Y, SOO V W. Extract conceptual graphs from plain texts in patent claims[J]. Engineering applications of artificial intelligence, 2012, 25(4):874-887.
[67] CHOI S, KANG D, LIM J, et al. A fact-oriented ontological approach to SAO-based function modeling of patents for implementing function-based technology database[J]. Expert system with application, 2012, 39(10):9129-9140.
[68] 薛驰,邱清盈,冯培恩,等.机械产品专利作用结构知识提取方法研究[J].农业机械学报, 2013, 44(1):222-229.(XUE C, QIU Q, FENG P, et al. Acquisition method for principle solution of mechanical patent[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(1):222-229)
[69] 沈萌红.创新的方法-TRIZ理论概述[M].北京:北京大学出版社, 2011.(SHEN M H. Innovative methods:an overview of TRIZ theory[M]. Beijing:Peking University Press, 2011.)
[70] BERGMANN I, BUTZKE D, WALTER L, et al. Evaluating the risk of patent infringement by means of semantic patent analysis:the case of DNA chips[J]. R&D management, 2008, 38(5):550-562.
[71] LI J, SUN A, HAN J, et al. A survey on deep learning for named entity recognition[J]. IEEE transactions on knowledge and data engineering, 2020, 34(1):1-20.
[72] PÉREZ-PÉREZ M, PÉREZ-RODRÍGUEZ G, VAZQUEZ M, et al. Evaluation of chemical and gene/protein entity recognition systems at BioCreative V.5:the CEMP and GPRO patents tracks[C]//Proceedings of the BioCreative V.5 challenge evaluation workshop. Barcelona:UPC, 2017:11-18.
[73] SAAD F. Named entity recognition for biomedical patent text using Bi-LSTM variants[C]//Proceedings of the 21st international conference on information integration and Webbased applications&services. New York:ACM, 2019:617-621.
[74] ZHAI Z, NGUYEN D Q, AKHONDI S A, et al. Improving chemical named entity recognition in patents with contextualized word embeddings[J]. arXiv preprint arXiv:1907.02679, 2019.
[75] LIU K. A survey on neural relation extraction[J]. Science China technological sciences, 2020(63):1971-1989.
[76] SREBROVIC R, YONAMIN J. Leveraging the BERT algorithm for patents with tensor flow and BigQuery.[EB/OL].[2023-11-28]. https://services.google.com/fh/files/blogs/bert_for_patents_white_paper.pdf.
[77] PARK H, YOON J, KIM K. Using function-based patent analysis to identify potential application areas of technology for technology transfer[J]. Expert systems with applications, 2013, 40(13):5260-5265.
[78] CHOI S, KIM H, YOON J, et al. An SAO-based textmining approach for technology road mapping using patent information[J]. R&D management, 2013, 43(1):52-73.
[79] WANG X, QIU P, ZHU D, et al. Identification of technology development trends based on subject-action-object analysis:the case of dye-sensitized solar cells[J]. Technological forecasting and social change, 2015(98):24-46.
[80] YOON J, KIM K. An analysis of property-function based patent networks for strategic R&D planning in fast-moving industries:the case of silicon-based thin film solar cells[J]. Expert systems with applications, 2012, 39(9):7709-7717.
[81] CHOI S, PARK H, KANG D, et al. An SAO-based text mining approach to building a technology tree for technology planning[J]. Expert system with application, 2012, 39(13):11443-11455.
[82] KIM H B, HYEOK Y J, KIM K S. Semantic SAO network of patents for reusability of inventive knowledge[C]//IEEE international conference on management of innovation and technology. Rosten:IEEE, 2012:510-515.
[83] WU H. Report of 2019 language&Intelligence technique evaluation. Baidu Corporation[EB/OL].[2023-11-18]. http://tcci.ccf.org.cn/summit/2019/dlinfo/1101-wh.pdf
[84] CHEN L, XU S, ZHU L, et al. A deep learning based method benefiting from characteristics of patents for semantic relation classification[J]. Journal of informetrics, 2022, 16(3):101312.
[85] FANTONI G, APREDA R, DELL'ORLETTA F, et al. Automatic extraction of function-behaviour-state information from patents[J]. Advanced engineering informatics, 2013, 27(3):317-334.
[86] KANAZASHI T, YONEDO K. Tornado generation method and apparatus:US6082387[P/OL]. 2000-07-04.[2023-11-28]. https://image-ppubs.uspto.gov/dirsearch-public/print/downloadPdf/6082387
[87] GOMI A, NOMURA Y, IKUMA K. Light scanning apparatus and method to prevent damage to an oscillation mirror, reducing its amplitude, in an abnormal control condition via a detection signal outputted to a controller even though the source still emits light:US7557976[P/OL]. 2009-07-07.[2023-11-28]. https://imageppubs.uspto.gov/dirsearch-public/print/downloadPdf/7557976
[88] BEHESHTI S M R, BENATALLAH B, VENUGOPAL S, et al. A systematic review and comparative analysis of cross-document coreference resolution methods and tools[J]. Computing, 2017, 99(4):313-349.
[89] CATTAN A, EIREW A, STANOVSKY G, et al. Cross-document coreference resolution over predicted mentions[J]. arXiv preprint arXiv:2106.01210, 2021.
[90] BARHOM S, SHWARTZ V, EIREW A, et al. Revisiting joint modeling of cross-document entity and event coreference resolution[J]. arXiv preprint arXiv:1906.01753, 2019.
[91] SHEN W, WANG J, HAN J. Entity linking with a knowledge base:issues, techniques, and solutions[J]. IEEE transactions on knowledge and data engineering, 2014, 27(2):443-460.
[92] LEE H, RECASENS M, CHANG A, et al. Joint entity and event coreference resolution across documents[C]//Proceedings of the 2012 joint conference on empirical methods in natural language processing and computational natural language learning. Stroudsburg:ACL, 2012:489-500.
[93] CATTAN A, EIREW A, STANOVSKY G, et al. Cross-document coreference resolution over predicted mentions[J]. arXiv preprint arXiv:2106.01210, 2021.
[94] CACIULARU A, COHAN A, BELTAGY I, et al. Cross-document language modeling[J]. arXiv preprint arXiv:2101.00406, 2021.
[95] WIPO. IPC 2021.01-Statistics[EB/OL].[2023-11-26]. https://www.wipo.int/classifications/ipc/en/ITsupport/Version20210101/transformations/stats.html.
[96] LARKEY L. Some issues in the automatic classification of US patents[C]//Working notes for the AAAI-98 workshop on learning for text categorization. Menlo Park:AAAI, 1998:87-90.
[97] FALL C J, TÖRCSVÁRI A, BENZINEB K, et al. Automated categorization in the international patent classification[C]//AcmSigir Forum. New York:ACM, 2003, 37(1):10-25.
[98] KOSTER C H A, SEUTTER M, BENEY J. Multi-classification of patent applications with winnow[C]//International Andrei Ershov memorial conference on perspectives of system Informatics. Heidelberg:Springer, 2003:546-555.
[99] KIM J H, CHOI K S. Patent document categorization based on semantic structural information[J]. Information processing&management, 2007, 43(5):1200-1215.
[100] CAI L, HOFMANN T. Hierarchical document categorization with support vector machines[C]//Proceedings of the thirteenth ACM international conference on information and knowledge management. New York:ACM, 2004:78-87.
[101] TIKK D, BIRÓ G, TÖRCSVÁRI A. A hierarchical online classifier for patent categorization[M]//Emerging technologies of text mining:techniques and applications. IGI Global, 2008:244-267.
[102] 吕璐成,韩涛,周健,等.基于深度学习的中文专利自动分类方法研究[J].图书情报工作, 2020, 64(10):75-85.(LÜ L C, HAN T, ZHOU J, et al. Research on the method of Chinese patent automatic classification based on deep learning[J]. Library and information service, 2020, 64(10):75-85.)
[103] MIKOLOV T, CHEN K, CORRADO G, et al. Efficient estimation of word representations in vector space[J]. arXiv preprint arXiv:1301.3781, 2013.
[104] DEVLIN J, CHANG M W, LEE K, ET AL. Bert:pre-training of deep bidirectional transformers for language understanding[J]. arXiv preprint arXiv:1810.04805, 2018.
[105] PETERS M, NEUMANN M, IYYER M, et al. Deep contextualized word representations[J]. arXiv preprint arXiv:1802.05365, 2018.
[106] RADFORD A, NARASIMHAN K, SALIMANS T, ET Al. Improving language understanding by generative pretraining[EB/OL].[2023-11-26]. https://www.mikecaptain.com/resources/pdf/GPT-1.pdf.
[107] HEPBURN J. Universal language model fine-tuning for patent classification[C]//Proceedings of the Australasian Language Technology Association workshop 2018. Stroudsburg:ACL, 2018:93-96.
[108] LEE J S, HSIANG J. Patent classification by fine-tuning BERT language model[J]. World patent information, 2020(61):101965.
[109] BEKAMIRI H, HAIN D S, JUROWETZKI R. Patentsberta:a deep nlp based hybrid model for patent distance and classification using augmented sbert[J]. arXiv preprint arXiv:2103.11933, 2021.
[110] 陈燕,黄迎燕,方建国.专利信息采集与分析[M].北京:清华大学出版社, 2006.(CHEN Y, HUANG Y, FANG J G. Patent information collection and analysis[M]. Beijing:Tsinghua Press, 2006.)
[111] SHALABY W, ZADROZNY W. Patent retrieval:a literature review[J]. Knowledge and information systems, 2019(61):631-660.
[112] MAGDY W, LEVELING J, JONES G J F. Exploring structured documents and query formulation techniques for patent retrieval[C]//Workshop of the cross-language evaluation forum for European languages. Berlin:Springer, 2009:410-417.
[113] RODA G, TAIT J, PIROI F, et al. CLEF-IP 2009:retrieval experiments in the intellectual property domain[C]//Workshop of the cross-language evaluation forum for European languages. Berlin:Springer, 2009:385-409.
[114] BASHIR S, RAUBER A. Improving retrievability of patents with cluster-based pseudo-relevance feedback documents selection[C]//Proceedings of the 18th ACM conference on information and knowledge management. New York:ACM, 2009:1863-1866
[115] MAHDABI P, CRESTANI F. Learning-based pseudo-relevance feedback for patent retrieval[C]//Information retrieval facility conference. Berlin:Springer, 2012:1-11.
[116] FUJI A. Enhancing patent retrieval by citation analysis[C]//Proceedings of the 30th annual international ACM SIGIR conference on research and development in information retrieval. New York:ACM, 2007:793-794.
[117] MAGDY W, JONES G J F. Applying the KISS principle for the CLEF-IP 2010 prior art candidate patent search task[EB/OL].[2023-11-28]. https://doras.dcu.ie/15834/.
[118] KRISHNAN A, CARDENAS A F, SPRINGER D. Search for patents using treatment and causal relationships[C]//Proceedings of the 3rd international workshop on patent information retrieval. New York:ACM, 2010:1-10.
[119] NGUYEN K L, MYAENG S H. Query enhancement for patent prior-art-search based on keyterm dependency relations and semantic tags[C]//Information retrieval facility conference. Berlin:Springer, 2012:28-42.
[120] MAHDABI P, CRESTANI F. The effect of citation analysis on query expansion for patent retrieval[J]. Information retrieval, 2014, 17(5/6):412-429.
[121] MAHDABI P, CRESTANI F. Query-driven mining of citation networks for patent citation retrieval and recommendation[C]//Proceedings of the 23rd ACM international conference on conference on information and knowledge management. New York:ACM, 2014:1659-1668.
[122] LANDAUER T K, FOLTZ P W, LAHAMD. An introduction to latent semantic analysis[J]. Discourse processes, 1998, 25(2/3):259-284.
[123] ALGHAMDI R, ALFALQI K. A survey of topic modeling in text mining[J]. International journal of advanced computer science and applications, 2015, 6(1):147-153
[124] LIU T Y. Learning to rank for information retrieval[J]. Foundation and trends in information retrieval, 2011, 3(3):225-331.
[125] SUN Y, HAN J. Mining heterogeneous information networks:principles and methodologies[J]. Synthesis lectures on data mining and knowledge discovery, 2012, 3(2):1-159.
[126] FU T, LEI Z, LEE W C. Patent citation recommendation for examiners[C]//2015 IEEE international conference on data mining. Rosten:IEEE, 2015:751-756.
[127] 苟妍.利用元路径提升的专利无效对比文件判断方法研究[D].北京:中国科学技术信息研究所, 2020.(GOU Y. Research on promotion methods of judging relevant patents in patent invalidation cases based on meta-path feature[D]. Beijing:Institute of Scientific and Technical Information of China, 2020.)
[128] CHOI S, LEE H, PARK E L, et al. Deep patent landscaping model using transformer and graph embedding[J]. arXiv preprint arXiv:1903.05823, 2019.
[129] 师英昭.利用图嵌入特征强化的专利对比文件检索方法研究[D].北京:中国科学技术信息研究所, 2021.(SHI Y Z. Research on the retrieval method of patent comparative document using graph embedding feature enhancement[D]. Beijing:Institute of Scientific and Technical Information of China, 2021.)
[130] 黄鲁成,李欣,吴菲菲.技术未来分析理论方法与应用[M].北京:科学出版社, 2010.(HUANG L C, LI X, WU F F. Theoretical method and application of technology future analysis[M]. Beijing:Science Press, 2010.)
[131] GALVIN R. Science roadmaps[J]. Science, 1998, 280(8):803.
[132] WIPS Co. Ltd, Patent map (PM).[EB/OL].[2023-11-10]. http://www.wipo.int/edocs/mdocs/sme/en/wipo_ip_bis_ge_03/wipo_ip_bis_ge_03_16-annex1.pdf.
[133] MOGEE M E, KOLAR R G. Patent co-citation analysis of Eli Lilly&Co. patents[J]. Expert opinion on therapeutic patents, 1999, 9(3):291-305.
[134] CHENA S H, HUANG M H, CHENA D Z. Identifying and visualizing technology evolution:a case study of smart grid technology[J]. Technological forecasting and social change, 2012, 79(6):1099-1110.
[135] GARFIELD E. Research fronts[J]. Current contents, 1994, 41(10):3-7.
[136] HUMMON N P, DEREIAN P. Connectivity in a citation network:the development of DNA theory[J]. Social networks, 1989, 11(1):39-63.
[137] LIU J S, LU Y Y L, LU W M, et al. Data envelopment analysis 1978-2010:a citation-based literature survey[J]. Omega, 2013, 41(1):3-15.
[138] XIAO Y, LU L Y, LIU J S, et al. Knowledge diffusion path analysis of data quality literature:a main path analysis[J]. Journal of informetrics, 2014, 8(3):594-605.
[139] 陈亮,杨冠灿,张静,等.面向技术演化分析的多主路径方法研究[J].图书情报工作, 2015(10):115, 124-130.(CHEN L, YANG G C, ZHANG J, et al. Research on multiple main paths method oriented to analysis of technological evolution[J]. Library and information service, 2015(10):115, 124-130.)
[140] 肖国华,郭捷婷.专利分析方法研究[J].情报杂志, 2008(1):12-15.(XIAO G H, GUO J T. The study of patent information analysis[J]. Journal of intelligence, 2008(1):12-15.)
[141] YOON B, PARK Y. A text-mining-based patent network:analytical tool for high-technology trend[J]. The journal of high technology management research, 2004, 15(1):37-50.
[142] YOUNG G, JONG H, SANG C. Visualization of patent analysis for emerging technology[J]. Expert systems with applications, 2008, 34(3):1804-1812.
[143] 方曙,胡正银,庞弘燊,等.基于专利文献的技术演化分析方法研究[J].图书情报工作, 2011, 55(22):42-46.(FANG S, HU Z Y, PANG H S, et al. Study on the method of analyzing technology evolution based on patent documents[J]. Library and information service, 2011, 55(22):42-46.)
[144] CHEN L, XU S, ZHU L, et al. A semantic main path analysis method to identify multiple developmental trajectories[J]. Journal of informetrics, 2022, 16(2):101281.
[145] UCHIDA H, MANO A, YUKAWA T. Patent map generation using concept-based vector space model[EB/OL].[2023-08-26]. http://research.nii.ac.jp/ntcir/ntcir-ws4/NTCIR4-WN/PATENT/NTCIR4WN-PATENT-UchidaH.pdf.
[146] LEE S, YOON B, PARK Y. An approach to discovering new technology opportunities:keyword-based patent map approach[J]. Technovation, 2009, 29(6/7):481-497.
[147] 王亮,张绍武,丁堃,等.基于HDP的汽车专利主题演化研究[J].情报学报, 2015, 33(9):944-951.(WANG L, ZHANG S W, DING K, et al. HDP-based vehicle patent topic evolution[J]. Journal of the China Society for Scientific and Technical Information, 2015, 33(9):944-951.)
[148] CASOLA S, LAVELLI A. Summarization, simplification, and generation:the case of patents[J]. arXiv preprint arXiv:2104.14860, 2021.
[149] PETRUZZI J D, MASON R M. Machine for drafting a patent application and process for doing same:US6049811[P]. 2000-04-11.[2023-11-28]. https://image-ppubs.uspto.gov/dirsearchpublic/print/downloadPdf/6049811
[150] GLASGOW J. Automated system and method for patent drafting and technology assessment:US8041739[P]. 2011-10-18.[2023-11-28]. https://image-ppubs.uspto.gov/dirsearch-public/print/downloadPdf/6082387.
[151] KNIGHT K, SCHICK I C, PRIYADARSHI J. Machine learning model for computer-generated patent applications to provide support for individual claim features in a specification:US10713443[P]. 2020-07-14.[2023-11-28]. https://image-ppubs.uspto.gov/dirsearch-public/print/downloadPdf/10713443
[152] LEE S, HSIANG J. Patent claim generation by fine-tuning OpenAI GPT-2[J]. World patent information, 2020(62):101983.
[153] LEE S, HSIANG J. PatentTransformer-2:controlling patent text generation by structural metadata[J]. arXiv preprint arXiv:2001.03708, 2020.
[154] LEE S. Measuring and controlling text generation by semantic search[C]//Companion proceedings of the Web conference 2020. New York:ACM, 2020:269-273.
[155] 李金鹏,张闯,陈小军,等.自动文本摘要研究综述[J].计算机研究与发展, 2021, 58(1):1-21.(LI J P, ZHANG C, CHEN X J, et al. Survey on automatic text summarization[J]. Journal of computer research and development, 2021, 58(1):1-21.)
[156] MILLE S, WANNER L. Multilingual summarization in practice:the case of patent claims[C]//Proceedings of the 12th annual conference of the European Association for Machine Translation. Stroudsburg:ACL, 2008:120-129.
[157] FERRARO G, SUOMINEN H, NUALART J. Segmentation of patent claims for improving their readability[C]//Proceedings of the 3rd workshop on predicting and improving text readability for target reader populations (PITR). Stroudsburg:ACL, 2014:66-73.
[158] WANNER L, BRÜGMANN S, DIALLO B, et al. PATExpert:semantic processing of patent documentation[EB/OL].[2023-11-18]. http://ftp.informatik.rwth-aachen.de/Publications/CEURWS/Vol-233/p51.pdf.
[159] 费一楠,张钊.高级专利加工服务PATExpert简析[J].中国发明与专利, 2013(6):54-57.(FEI Y N, ZHANG Z. The analysis of PATExpert for advanced patent processing service[J]). China invention&patent, 2013(6):54-57.)
[160] OKAMOTO M, SHAN Z, ORIHARA R. Applying information extraction for patent structure analysis[C]//Proceedings of the 40th international ACM SIGIR conference on research and development in information retrieval. New York:ACM, 2017:989-992.
[161] ANDERSSON L, LUPU M, HANBURY A. Domain adaptation of general natural language processing tools for a patent claim visualization system[C]//Information retrieval facility conference. Heidelberg:Springer, 2013:70-82.
[162] KANG J, SOUILI A, CAVALLUCCI D. Text simplification of patent documents[C]//International TRIZ future conference. Heidelberg:Springer, 2018:225-237.
[163] KRESTEL R, CHIKKAMATH R, HEWEL C, et al. A survey on deep learning for patent analysis[J]. World patent information, 2021, 65(6):102035.
[164] RAGHUPATHI V, ZHOU Y, RAGHUPATHI W. Legal decision support:exploring big data analytics approach to modeling pharma patent validity cases[J]. IEEE access, 2018, 6(7):41518-41528.
[165] JURANEK S, OTNEIM H. Using machine learning to predict patent lawsuits.[EB/OL].[2023-11-28]. https://hdl.handle.net/11250/2760583.
[166] CAMPBELL W, LI L, DAGLI C, et al. Predicting and analyzing factors in patent litigation.[EB/OL].[2023-11-28]. http://www.mlandthelaw.org/papers/campbell.pdf.
[167] 中华人民共和国知识产权局.专利审查指南(2010)[M].北京:知识产权出版社, 2009.(China National Intellectual Property Administration. Patent examination guideline[M]. Beijing:Intellectual Property Publishing House, 2009.)
[168] LIU Q, WU H, YE Y, et al. Patent litigation prediction:a convolutional tensor factorization approach[C]//Proceedings of the 27th international joint conference on artificial intelligence. Burlington:Morgan Kaufmann, 2018:5052-5059.
[169] RAJSHEKHAR K, ZADROZNY W, GARAPATI S S. Analytics of patent case rulings:empirical evaluation of models for legal relevance[C]//Proceedings of the 16th international conference on artificial intelligence and law. New York:ACM, 2017.
[170] RAJSHEKHAR K, SHALABY W, ZADROZNY W. Analytics in post-grant patent review:possibilities and challenges (preliminary report)[C]//Proceedings of the American Society for Engineering Management 2016 international annual conference. Red Hook:Curran Associates, Inc., 2016.
[171] U.S. patent phrase to phrase matching[EB/OL].[2023-11-28]. https://www.kaggle.com/c/us-patent-phrase-to-phrase-matching.