情报研究

失真健康信息特征对社交媒体用户分享意愿影响机制研究

  • 薛翔 ,
  • 马海云 ,
  • 赵宇翔 ,
  • 朱庆华
展开
  • 南京大学信息管理学院南京 210023
薛翔,博士研究生;马海云,博士研究生;赵宇翔,教授,博士生导师,通信作者, E-mail:yxzhao@vip.163.com;朱庆华,教授,博士,博士生导师。

收稿日期: 2023-07-21

  修回日期: 2023-10-11

  网络出版日期: 2024-03-15

基金资助

本文系国家自然科学基金面上项目“社交媒体环境下失真健康信息传播机制与协同治理研究”(项目编号: 72174083)和国家自然科学基金青年项目“社交媒体失真健康信息的特征识别与协同纠偏机制研究”(项目编号: 72204076)研究成果之一。

Investigating the Influence of Health Misinformation Features on Users’ Sharing Willingness in Social Media

  • Xue Xiang ,
  • Ma Haiyun ,
  • Zhao Yuxiang ,
  • Zhu Qinghua
Expand
  • School of Information Management, Nanjing University, Nanjing 210023

Received date: 2023-07-21

  Revised date: 2023-10-11

  Online published: 2024-03-15

Supported by

This work is supported by the Natural Science Foundation of China project titled “Study on the Dissemination Mechanism and Collaborative Management of Health Misinformation in the Social Media Environment”(Grant No.72174083) and Natural Science Foundation of China youth project titled “Research on the Identification of Features and Collaborative Correction Mechanism of Health Misinformation in Social Media”(Grant No.72204076).

摘要

[目的/意义]社交媒体已经成为失真健康信息滋生和分享传播的温床,探索失真健康信息特征对用户分享意愿的交互影响机制,能够为失真健康信息治理提供助力。[方法/过程]聚焦于失真健康信息特征中的情感诉求、信息来源和内容变造三个方面,结合感知信息质量和感知信息可信度两种中介机制,提出9个研究假设、1个研究问题。通过设计2×2×2的参与者内部实验情境,收集223名参与者的1 784条实验数据,并利用单因素方差分析和路径分析对假设和研究问题展开验证探索。[结果/结论]研究结果表明,情感诉求、信息来源和内容变造三种启发式线索对用户分享意愿存在不同程度的促进作用,并且彼此间存在交互叠加效应。同时,被扭曲的感知信息质量和感知信息可信度在这种促进关联中扮演关键中介作用,是用户分享失真健康信息的重要前置因素。影响机制研究加深了对互联网失真健康信息传播行为的理解,并为各方开展失真健康信息治理提供新的见解。

本文引用格式

薛翔 , 马海云 , 赵宇翔 , 朱庆华 . 失真健康信息特征对社交媒体用户分享意愿影响机制研究[J]. 图书情报工作, 2024 , 68(4) : 70 -82 . DOI: 10.13266/j.issn.0252-3116.2024.04.006

Abstract

[Purpose/Significance] Misinformation is easily generated and disseminated through social media. Investigating the interactive influence of health misinformation features on users’ sharing willingness is helpful for the health misinformation governance. [Method/Process] The paper identified emotional appeal, information source, and content modification as three typical features of health misinformation. With two mediating mechanisms, perceived information quality and perceived information trustworthiness, it proposed nine research hypotheses and one research question. And it collected 1784 experimental data from 223 participants with a 2×2×2 within-participant experimental design. And it analyzed the hypotheses and research question through univariate ANOVA and path analysis. [Result/Conclusion] The results show that the three heuristic cues, namely emotional appeal, information source, and content modification, contribute to users’ willingness to share in different degree with an interactive overlapping effect on each other. Perceived information quality and perceived information trustworthiness play a crucial mediating role in this facilitation association and are essential antecedents for establishing users’ willingness to share. This study advances the understanding of health misinformation communication behavior on the internet and provides new insights into the health misinformation governance.

参考文献

[1] 宋士杰, 赵宇翔, 朱庆华. 补偏救弊:社交媒体中失真健康信息的传播、识别与纠偏研究[J/OL]. 情报杂志[2023-12-18]. http://kns.cnki.net/kcms/detail/61.1167.G3.20230328.1114.006.html. (SONG S, ZHAO Y X, ZHU Q H. Remedy defects:a comprehensive review on health misinformation dissemination, identification, and correction in social media[J/OL]. Journal of intelligence[2023-12-18]. http://kns.cnki.net/kcms/detail/61.1167.G3.20230328.1114.006.html.)
[2] CHOU W Y S, OH A, KLEIN W M P. Addressing health-related misinformation on social media[J]. Jama, 2018, 320(23):2417-2418.
[3] 薛翔, 马海云, 赵宇翔, 等. 用户感知视角下的健康信息质量评估研究——以短视频平台为例[J]. 图书与情报, 2022(2):69-79. (XUE X, MA H Y, ZHAO Y X, et al. Perceived quality of health information in short video platforms:modeling the process and influencing factors[J]. Library & information, 2022(2):69-79.)
[4] APUKE O D, OMAR B. Fake news and COVID-19:modelling the predictors of fake news sharing among social media users[J]. Telematics and informatics, 2021, 56(4):101475.
[5] CHOU W S, TRIVEDI N, PETERSON E, et al. How do social media users process cancer prevention messages on Facebook? An eye-tracking study[J]. Patient education and counseling, 2020, 103(6):1161-1167.
[6] BODE L, VRAGA E K. See something, say something:correction of global health misinformation on social media[J]. Health communication, 2018, 33(9):1131-1140.
[7] LAATO S, ISLAM A K M N, ISLAM M N, et al. What drives unverified information sharing and cyberchondria during the COVID-19 pandemic?[J]. European journal of information systems, 2020, 29(3):288-305.
[8] SONG H, SO J, SHIM M, et al. What message features influence the intention to share misinformation about COVID-19 on social media? The role of efficacy and novelty[J]. Computers in human behavior, 2023, 138(2):107439.
[9] PENG W, LIM S, MENG J. Persuasive strategies in online health misinformation:a systematic review[J]. Information, communication & society, 2022, 14(1):1-18.
[10] LOZANO M G, BRYNIELSSON J, FRANKE U, et al. Veracity assessment of online data[J]. Decision support systems, 2020, 129(4):113132.
[11] MOURAD A, SROUR A, HARMANANI H, et al. Critical impact of social networks infodemic on defeating coronavirus COVID-19 pandemic:Twitter-based study and research directions[J]. IEEE transactions on network and service management, 2020, 17(4):2145-2155.
[12] KIM H K, AHN J, ATKINSON L, et al. Effects of COVID-19 misinformation on information seeking, avoidance, and processing:a multi-country comparative study[J]. Science communication, 2020, 42(5):586-615.
[13] WALTER N, BROOKS J J, SAUCIER C J, et al. Evaluating the impact of attempts to correct health misinformation on social media:a meta-analysis[J]. Health communication, 2021, 36(13):1776-1784.
[14] WANG Y, MCKEE M, TORBICA A, et al. Systematic literature review on the spread of health-related misinformation on social media[J]. Social science & medicine, 2019, 240(2):112552.
[15] METZGER M J, FLANAGIN A J, MEDDERS R B. Social and heuristic approaches to credibility evaluation online[J]. Journal of communication, 2010, 60(3):413-439.
[16] PENNYCOOK G, RAND D G. Lazy, not biased:susceptibility to partisan fake news is better explained by lack of reasoning than by motivated reasoning[J]. Cognition, 2019, 188(1):39-50.
[17] MITCHELL S S D. Population control, deadly vaccines, and mutant mosquitoes:the construction and circulation of Zika virus conspiracy theories online[J]. Canadian journal of communication, 2019, 44(2):211-237.
[18] SALVADOR CASARA B G, SUITNER C, BETTINSOLI M L. Viral suspicions:vaccine hesitancy in the web 2.0[J]. Journal of experimental psychology:applied, 2019, 25(3):354-371.
[19] FAASSE K, CHATMAN C J, MARTIN L R. A comparison of language use in pro-and anti-vaccination comments in response to a high profile Facebook post[J]. Vaccine, 2016, 34(47):5808-5814.
[20] INTRONE J, KORSUNSKA A, KRSOVA L, et al. Mapping the narrative ecosystem of conspiracy theories in online anti vaccination discussions[C]//International conference on social media and society. New York:Association for computing machinery, 2020:184-192.
[21] CHEN L, LING Q, CAO T, et al. Mislabeled, fragmented, and conspiracy-driven:a content analysis of the social media discourse about the HPV vaccine in China[J]. Asian journal of communication, 2020, 30(6):450-469.
[22] KEARNEY M D, SELVAN P, HAUER M K, et al. Characterizing HPV vaccine sentiments and content on Instagram[J]. Health education & behavior, 2019, 46(2):37S-48S.
[23] CHUA A Y K, BANERJEE S. Intentions to trust and share online health rumors:an experiment with medical professionals[J]. Computers in human behavior, 2018, 87(3):1-9.
[24] DEDOMINICIS K, BUTTENHEIM A M, HOWA A C, et al. Shouting at each other into the void:a linguistic network analysis of vaccine hesitance and support in online discourse regarding California law SB277[J]. Social science & medicine, 2020, 266(5):113216.
[25] PRASAD A. Anti-science misinformation and conspiracies:COVID-19, post-truth, and science & technology studies (STS)[J]. Science, technology and society, 2022, 27(1):88-112.
[26] SCHIAVO R. Health communication:from theory to practice[M]. New York:Jossey-Bass, 2013.
[27] BIANCOVILLI P, MAKSZIN L, CSONGOR A. Breast cancer on social media:a quali-quantitative study on the credibility and content type of the most shared news stories[J]. BMC women's health, 2021, 21(1):1-11.
[28] MASSEY P M, KEARNEY M D, HAUER M K, et al. Dimensions of misinformation about the HPV vaccine on Instagram:content and network analysis of social media characteristics[J]. Journal of medical internet research, 2020, 22(12):e21451.
[29] PENNYCOOK G, RAND D G. Who falls for fake news? The roles of bullshit receptivity, over claiming, familiarity, and analytic thinking[J]. Journal of personality, 2020, 88(2):185-200.
[30] ALI K, LI C, MUQTADIR S A. The effects of emotions, individual attitudes towards vaccination, and social endorsements on perceived fake news credibility and sharing motivations[J]. Computers in human behavior, 2022, 134(2):107307.
[31] 李月琳, 张秀, 王姗姗. 社交媒体健康信息质量研究:基于真伪健康信息特征的分析[J]. 情报学报, 2018, 37(3):294-304. (LI Y L, ZHANG X, WANG S S. Health information quality in social media:an analysis based on the features of real and fake health information[J]. Journal of the China Society for Scientific and Technical Information, 2018, 37(3):294-304.)
[32] SUSSMAN S W, SIEGAL W S. Informational influence in organizations:an integrated approach to knowledge adoption[J]. Information systems research, 2003, 14(1):47-65.
[33] CHAIKEN S. Heuristic versus systematic information processing and the use of source versus message cues in persuasion[J]. Journal of personality and social psychology, 1980, 39(5):752.
[34] CHONG A Y L, KHONG K W, MA T, et al. Analyzing key influences of tourists'acceptance of online reviews in travel decisions[J]. Internet research, 2018, 28(3):564-586.
[35] TSENG S Y, WANG C N. Perceived risk influence on dual-route information adoption processes on travel websites[J]. Journal of business research, 2016, 69(6):2289-2296.
[36] PENG L F, LIAO Q Y, WANG X R, et al. Factors affecting female user information adoption:an empirical investigation on fashion shopping guide Websites[J]. Electronic commerce research, 2016, 16(2):145-169.
[37] JIN J H, YAN X B, LI Y J, et al. How users adopt healthcare information:an empirical study of an online Q&A community[J]. International journal of medical informatics, 2016, 86:91-103.
[38] LUO M, HANCOCK J T, MARKOWITZ D M. Credibility perceptions and detection accuracy of fake news headlines on social media:effects of truth-bias and endorsement cues[J]. Communication research, 2022, 49(2):171-195.
[39] SUN Y, ZHANG Y, GWIZDKA J, et al. Consumer evaluation of the quality of online health information:systematic literature review of relevant criteria and indicators[J]. Journal of medical internet research, 2019, 21(5):e12522.
[40] CHEN L, LING Q, CAO T, et al. Mislabeled, fragmented, and conspiracy-driven:a content analysis of the social media discourse about the HPV vaccine in China[J]. Asian journal of communication, 2020, 30(6):450-469.
[41] RIEH S Y. Judgment of information quality and cognitive authority in the web[J]. Journal of the American Society for Information Science and Technology, 2002, 53(2):145-161.
[42] LIN Y, COLE C, DALKIR K. The relationship between perceived value and information source use during KM strategic decision-making:a study of 17 Chinese business managers[J]. Information processing & management, 2014, 50(1):156-174.
[43] GOBINATH J, GUPTA D. Online reviews:Determining the perceived quality of information[C]//2016 international conference on advances in computing, communications and informatics. Jaipur:IEEE, 2016:412-416.
[44] TANDOC E C, LING R, WESTLUND O, et al. Audiences' acts of authentication in the age of fake news:a conceptual framework[J]. New media & society, 2018, 20(8):2745-2763.
[45] APPELMAN A, SUNDAR S S. Measuring message credibility:Construction and validation of an exclusive scale[J]. Journalism & mass communication quarterly, 2016, 93(1):59-79.
[46] STEFANONE M A, VOLLMER M, COVERT J M. In news we trust? Examining credibility and sharing behaviors of fake news[C]//Proceedings of the 10th international conference on social media and society. New York:Association for Computing Machinery, 2019:136-147.
[47] RIMé B. The social sharing of emotion as a source for the social knowledge of emotion[J]. Everyday conceptions of emotion:an introduction to the psychology, anthropology and linguistics of emotion, 1995, 19(1):475-489.
[48] UNKELBACH C, ALVES H, KOCH A. Negativity bias, positivity bias, and valence asymmetries:Explaining the differential processing of positive and negative information[J]. Advances in experimental social psychology, 2020, 62(1):115-187.
[49] MENDOZA-DENTON R, AYDUK O, MISCHEL W, et al. Person situation interaction ism in self-encoding (I am… when…):implications for affect regulation and social information processing[J]. Journal of personality and social psychology, 2001, 80(4):533-544.
[50] WANG P W, AHORSU D K, LIN C Y, et al. Motivation to have COVID-19 vaccination explained using an extended protection motivation theory among university students in China:the role of information sources[J]. Vaccines, 2021, 9(4):380.
[51] PLEBANEK D J, SLOUTSKY V M. Selective attention, filtering, and the development of working memory[J]. Developmental science, 2019, 22(1):e12727.
[52] CHANG C. The influence of ambivalence toward a communication source:media context priming and persuasion polarization[J]. Communication research, 2014, 41(6):783-808.
[53] LEE M, JEONG M, LEE J. Roles of negative emotions in customers' perceived helpfulness of hotel reviews on a user-generated review website:a text mining approach[J]. International journal of contemporary hospitality management, 2017, 29(2):762-783.
[54] BAKER M A, KIM K. Value destruction in exaggerated online reviews:the effects of emotion, language, and trustworthiness[J]. International journal of contemporary hospitality management, 2019, 31(4):1956-1976.
[55] HARRIS L C, FISK R P, SYSALOVA H. Exposing Pinocchio customers:investigating exaggerated service stories[J]. Journal of service management, 2016, 27(2):63-90.
[56] CHADWICK A, VACCARI C, KAISER J. The amplification of exaggerated and false news on social media:the roles of platform use, motivations, affect, and ideology[J/OL]. American behavioral scientist[2023-12-18]. https://doi.org/10.1177/00027642221118264.
[57] FADLALLAH R, EL-JARDALI F, NOMIER M, et al. Using narratives to impact health policy-making:a systematic review[J]. Health research policy and systems, 2019, 17(2):1-22.
[58] GILBERT M. Shared intention and personal intentions[J]. Philosophical studies, 2009, 144(4):167-187.
[59] SUI Y, ZHANG B. Determinants of the perceived credibility of rebuttals concerning health misinformation[J]. International journal of environmental research and public health, 2021, 18(3):1345.
[60] BHATTACHERJEE A, SANFORD C. Influence processes for information technology acceptance:an elaboration likelihood model[J]. MIS quarterly, 2006(30):805-825.
[61] CHOU C H, WANG Y S, TANG T I. Exploring the determinants of knowledge adoption in virtual communities:a social influence perspective[J]. International journal of information management, 2015, 35(3):364-376.
[62] NORMAN C D, SKINNER H A. eHEALS:the eHealth literacy scale[J]. Journal of medical Internet research, 2006, 8(4):e507.
[63] NEKMAT E. Nudge effect of fact-check alerts:Source influence and media skepticism on sharing of news misinformation in social media[J]. Social media+ society, 2020, 6(1):2056305119897322.
[64] 薛翔, 赵宇翔, 马海云等. 活动理论视角下的信息偶遇行为模型研究[J]. 情报理论与实践, 2021, 44(9):97-105. (XUE X, ZHAO Y X, MA H Y, et al. A research on the information encountering model based on activity theory[J]. Information studies:theory & application, 2021, 44(9):97-105.)
文章导航

/