情报研究

突发事件网络舆情群体极化风险评估研究

  • 贾若男 ,
  • 王晰巍 ,
  • 王楠阿雪
展开
  • 1 湘潭大学公共管理学院 湘潭 411105;
    2 吉林大学商学与管理学院 长春 130022;
    3 吉林大学大数据管理研究中心 长春 130022;
    4 吉林大学国家发展与安全研究院网络空间治理研究中心 长春 130022;
    5 吉林大学国家发展与安全研究院 长春 130022
贾若男,讲师,硕士生导师;王楠阿雪,博士研究生。

收稿日期: 2023-07-31

  修回日期: 2023-11-06

  网络出版日期: 2024-03-28

基金资助

本文系湖南省社会科学基金青年项目“突发事件情境下网络舆情生态失衡风险及治理策略研究”(项目编号:22YBQ052)、国家社会科学基金重大项目“大数据驱动的社交网络舆情主题图谱构建及调控策略研究”(项目编号:18ZDA310)和吉林大学研究生创新研究计划项目“重大突发事件下网络舆情传播主题图谱构建及风险识别研究”(项目编号:2022135)研究成果之一。

Research on Risk Assessment of Group Polarization of Online Public Opinion in Emergencies

  • Jia Ruonan ,
  • Wang Xiwei ,
  • Wang Nanaxue
Expand
  • 1 School of Public Administration, Xiangtan University, Xiangtan 411105;
    2 School of Business and Management, Jilin University, Changchun 130022;
    3 Research Center for Big Data Management, Jilin University, Changchun 130022;
    4 Cyberspace Governance Research Center, National Academy of Development and Security, Jilin University, Changchun 130022;
    5 National Academy of Development and Security, Jilin University, Changchun 130022

Received date: 2023-07-31

  Revised date: 2023-11-06

  Online published: 2024-03-28

Supported by

This work is supported by the Youth Program of Social Science Fund of Hunan Province titled “Risk and Management Strategy of Ecological Imbalance of Online Public Opinion in Emergency” (Grant No. 22YBQ052), Key Program of National Social Science Fund of China titled “Topic Graph Construction and Regulation of Social Network Public Opinion Driven by Big Data” (Grant No. 18ZDA310), and Postgraduate Innovation Program of Jilin University titled “Topic Graph Construction and Risk Identification of Online Public Opinion Communication in Emergencies” (Grant No. 2022135).

摘要

[目的/意义] 在突发事件网络舆情的演变过程中,用户会分化成不同的群体,随着群体内部共同立场的不断建构和强化,群体极化最终形成。由于极化可能会带来严重的社会、文化、经济和政治冲击,对极化风险进行评估和应对显得尤为重要。[方法/过程] 在对突发事件网络舆情、群体极化、议程设置等相关概念与理论进行系统回顾与梳理的基础上,遵循“数据—知识—服务”的转化路径提出群体极化风险评估模型:首先,构建事件多维主题图谱以形成舆情知识资源集合;其次,从中确定群体极化风险要素抽取维度并量化末级指标;最后,采用熵权法进行风险评估,并提出具有针对性的应对策略。[结果/结论] 舆情影响力对群体极化风险的影响最大,其次是公众议程多元程度,在所有风险要素中,公众情感极化程度的权值最小。

本文引用格式

贾若男 , 王晰巍 , 王楠阿雪 . 突发事件网络舆情群体极化风险评估研究[J]. 图书情报工作, 2024 , 68(6) : 83 -92 . DOI: 10.13266/j.issn.0252-3116.2024.06.008

Abstract

[Purpose/Significance] In the evolution process of online public opinion in emergencies, users gradually form different groups. With the strengthening of the common position within the group, group polarization will finally take shape. Due to its serious social, cultural, economic, and political impacts, it is particularly important to assess and respond to polarization risks.[Method/Process] This paper systematically reviewed the concepts and theories related to online public opinion, group polarization, agenda setting. It proposed the risk assessment model of group polarization following the transformation path of “data-knowledge-service”. Firstly, it constructed a multidimensional thematic map of events to form a collection of public opinion knowledge resources. Secondly, it determined the dimensions of group polarization risk factors and quantified the end level indicators. Finally, it adopted the entropy weight method for risk assessment and proposed response strategies.[Result/Conclusion] The results show that public opinion influence has the greatest impact on the risk of group polarization, followed by the degree of public agenda pluralism. Among all risk elements, the degree of public sentiment polarization has the least entropic weight.

参考文献

[1] Hootsuite. 2022年全球网络概览报告[EB/OL].[2024-02-06]. https://www.199it.com/archives/1386011.html. (Hootsuite. Digital 2022 global overview report[EB/OL].[2024-02-06]. https://www.199it.com/archives/1386011.html.)
[2] NIKOLOV D, LALMAS M, FLAMMINI A, et al. Quantifying biases in online information exposure[J]. Journal of the Association for Information Science and Technology, 2019, 70(3): 218-229.
[3] 邢云菲, 王晰巍. 国外社交媒体中群体极化研究综述[J]. 情报科学, 2022, 40(9): 176-184. (XING Y F, WANG X W. A review of research on group polarization in foreign social media[J]. Information science, 2022, 40(9): 176-184.)
[4] WOON J. Primaries and candidate polarization: behavioral theory and experimental evidence[J]. American political science review, 2018, 112(4): 826-843.
[5] NEO R L, JOHNSON B K. Online products and consumers: partisan ratings and mechanisms for affective polarization[J]. Telematics and informatics, 2020, 54: 101467.
[6] 卢国强, 黄微, 杨佩霖. 基于风险耦合的突发事件网络舆情群体极化演化分析[J]. 现代情报, 2023, 43(3): 96-109. (LU G Q, HUANG W, YANG P L. Evolutionary analysis of group polarization of critical incident online public opinion based on risk coupling[J]. Journal of modern information, 2023, 43(3): 96-109.)
[7] 卢国强, 黄微, 刘毅洲. 群体极化视域下突发事件网络舆情极端观点识别研究[J]. 情报资料工作, 2023, 44(1): 42-51. (LU G Q, HUANG W, LIU Y Z. A study on the identification of extreme viewpoints of critical incident online public opinion under the perspective of group polarization[J]. Information and documentation services, 2023, 44(1): 42-51.)
[8] XING Y, WANG X, QIU C, et al. Research on opinion polarization by big data analytics capabilities in online social networks[J]. Technology in society, 2022, 68: 101902.
[9] 孙倬, 赵红, 王宗水. 网络舆情研究进展及其主题关联关系路径分析[J]. 图书情报工作, 2021, 65(7): 143-154. (SUN Z, ZHAO H, WANG Z S. Progress of network public opinion research and its path analysis of theme-association relationship[J]. Library and information service, 2021, 65(7): 143-154.)
[10] CHEN T, LI Q, FU P, et al. Public opinion polarization by individual revenue from the social preference theory[J]. International journal of environmental research and public health, 2020, 17(3): 946-975.
[11] YARCHI M, BADEN C, KLIGLER-VILENCHIK N. Political polarization on the digital sphere: a cross-platform, over-time analysis of interactional, positional, and affective polarization on social media[J]. Political communication, 2021, 38(1/2): 98-139.
[12] KUBIN E, VON SIKORSKI C. The role of (social) media in political polarization: a systematic review[J]. Annals of the international communication association, 2021, 45(3): 188-206.
[13] MCCOMBS M E, SHAW D L. The agenda-setting function of mass media[J]. Public opinion quarterly, 1972, 36(2): 176-187.
[14] 章留斌, 陈天明, 阿达来提·杂满, 等. 民间舆论场域中失效的议程设置与极化的网络群体——基于“江歌事件”新浪微博数据的内容分析[J]. 情报科学, 2019, 37(2): 95-101. (ZHANG L B, CHEN T M, ADALETI Z M, et al. Failed agenda setting and polarized network groups in the field of civil public opinion:a content analysis based on the Sina Weibo data of “Jiangge incident”[J]. Information science, 2019, 37(2): 95-101.)
[15] GILARD F, GESSLER T, KUBLI M, et al. Social media and political agenda setting[J]. Political communication, 2022, 39(1): 39-60.
[16] LU Q, MIHALIK B J, HEERE B, et al. Media effect on resident attitudes toward an Olympic bid[J]. Tourism management perspectives, 2019, 29: 66-75.
[17] ZHANG L, WANG P. Public attitude and opinion leaders: mapping Chinese discussion of EU's energy role on social Media[J]. JCMS: journal of common market studies, 2022, 60(6): 1777-1796.
[18] LIN T T C, TSAI C H. Taking stock of social-political polarization in Asia: political communication, social media and digital governance[J]. Asian journal of communication, 2022, 32(2): 71-74.
[19] 袁荣亮, 姬忠田. 基于深度学习的网络信息资源知识图谱研究[J]. 情报理论与实践, 2021, 44(5): 173-179. (YUAN R L, JI Z T. Research on knowledge graph of web information resources based on deep learning[J]. Information studies: theory & application, 2021, 44(5): 173-179.)
[20] 李纲, 王施运, 毛进, 等. 面向态势感知的国家安全事件图谱构建研究[J]. 情报学报, 2021, 40(11): 1164-1175. (LI G, WANG S Y, MAO J, et al. Construction of national security event map and its application for situation awareness[J]. Journal of the China Society for Scientific and Technical Information, 2021, 40(11): 1164-1175.)
[21] MOCANU D, ROSSI L, ZHANG Q, et al. Collective attention in the age of (mis) information[J]. Computers in human behavior, 2015, 51:1198-1204.
[22] 贾若男. 社交网络舆情事件主题图谱构建及舆情生态治理研究[D]. 长春: 吉林大学, 2022. (JIA R N. Research on the construction of topic graph of social network public opinion events and ecological governance of public opinion[D]. Changchun: Jilin University, 2022.)
[23] 安璐, 陈苗苗, 李纲. 社交媒体环境下突发事件严重性评估和预警机制研究[J]. 图书情报工作, 2021, 65(5): 98-109. (AN L, CHEN M M, LI G. Research on severity assessment and early warning mechanism of emergencies in social media environment[J]. Library and information service, 2021, 65(5): 98-109.)
[24] DU Q, HAN Z. The framing of nuclear energy in Chinese media discourse: a comparison between national and local newspapers[J]. Journal of cleaner production, 2020, 245: 118695.
[25] 陶建杰, 林晶珂, 尹子伊. 信息穷人还是信息富人:可行能力视角下农村居民信息分化及政府支持的效应研究[J]. 国际新闻界, 2022, 44(2): 78-97. (TAO J J, LIN J K, YIN Z Y. Information poor or information rich: a study of rural residents' information differentiation and the effect of government support under the viability perspective[J]. Chinese journal of journalism & communication, 2022, 44(2): 78-97.)
[26] 李洋, 李思佳, 叶琼元, 等. 面向突发事件网络舆情的社会情绪唤醒综合评价与疏导策略研究[J]. 情报资料工作, 2020, 41(6): 17-25. (LI Y, LI S J, YE Q Y, et al. Research on comprehensive evaluation of social emotional arousal and diversion strategies for network public opinion of emergencies[J]. Information and documentation services, 2020, 41(6): 17-25.)
[27] ERYANDO T, SIPAHUTAR T, RAHARDIANTORO S. The risk distribution of COVID-19 in Indonesia: a spatial analysis[J]. Asia pacific journal of public health, 2020, 32(8): 450-452.
[28] NEEDHAM M, HODLER A E. Graph algorithms: practical examples in Apache Spark and Neo4j[M]. Beijing: O'Reilly Media, 2019.
[29] LIU X, LU J, WANG H. When health information meets social media: exploring virality on Sina Weibo[J]. Health communication, 2017, 32(10): 1252-1260.
[30] RAO Q, ZHANG Z, LÜ Y, et al. Factors associated with influential health-promoting messages on social media: content analysis of Sina Weibo[J]. JMIR medical informatics, 2020, 8(10): e20558.
[31] DAN V, RAUPP J. A systematic review of frames in news reporting of health risks: characteristics, construct consistency vs. name diversity, and the relationship of frames to framing functions[J]. Health, risk & society, 2018, 20(5-6): 203-226.
[32] 周如, 朱浩泽, 郭文雅, 等. 基于多模态方面术语提取和方面级情感分类的统一框架[J]. 计算机研究与发展, 2023, 60(12): 2877-2889. (ZHOU R, ZHU H Z, GUO W Y, et al. A unified framework based on multimodal aspect-term extraction and aspect-level sentiment classification[J]. Computer research and development, 2023, 60(12): 2877-2889.)
[33] 何振宇, 董祥祥, 朱庆华. 多维度视角下百度百科词条评价指标构建[J]. 图书情报工作, 2019, 63(12): 114-120. (HE Z Y, DONG X X, ZHU Q H. Construction of evaluation indexes for Baidu encyclopedia entries under multi-dimensional perspective[J]. Library and information service, 2019, 63(12): 114-120.)
[34] 夏苏迪, 邓胜利, 李雅静. 用户契合视角下知识分享社区专家贡献度评价研究[J]. 情报资料工作, 2021, 42(6): 74-81. (XIA S D, DENG SL, LI Y J. Research on the evaluation of expert contribution in knowledge sharing community under the perspective of user fit[J]. Information and documentation services, 2021, 42(6): 74-81.)
[35] LIU M, RONG L. An online multi-dimensional opinion dynamic model with misinformation diffusion in emergency events[J]. Journal of information science, 2022, 48(5), 640-659.
[36] 陈鹏宇. 线性无量纲化方法对比及反向指标正向化方法[J]. 运筹与管理, 2021, 30(10): 95-101. (CHEN P Y. Comparison of linear dimensionless methods and inverse indicator normalization methods[J]. Operations research and management science, 2021, 30(10): 95-101.)
[37] 杨彬. 篇章动态视角下副词性成分的叙事价值分析[J]. 当代修辞学, 2023, 235(1): 42-50. (YANG B. An analysis of the narrative value of adverbial constituents under the chapter dynamic perspective[J]. Contemporary rhetoric, 2023, 235(1): 42-50.)
[38]彭国超, 程晓. 热点事件中社交媒体群体极化形成机理研究[J]. 信息资源管理学报, 2023, 13(2): 42-52. (PENG G C, CHENG X. Research on the formation mechanism of social media group polarization in hot events[J]. Journal of information resources management, 2023, 13(2): 42-52.)
[39] 田世海, 张家毓, 孙美琪. 基于改进SIR的网络舆情信息生态群落衍生研究[J]. 情报科学, 2020, 38(1): 3-9, 16. (TIAN S H, ZHANG J Y, SUN M Q. A study on the derivation of online public opinion information ecological communities based on improved SIR[J]. Information science, 2020, 38(1): 3-9, 16.)
文章导航

/