知识组织

智慧图书馆建设过程中技术元素分析及知识图谱构建研究

  • 程秀峰 ,
  • 曹琪 ,
  • 蒋开宸 ,
  • 周梦蝶
展开
  • 华中师范大学信息管理学院 武汉 430079
程秀峰,副教授,博士;蒋开宸,本科生;周梦蝶,硕士研究生。

收稿日期: 2023-08-29

  修回日期: 2023-12-31

  网络出版日期: 2024-05-16

基金资助

本文系国家自然科学基金面上项目“基于情境感知的智慧图书馆阅读与交流服务实现路径研究”(项目编号:71974069)研究成果之一。

Analysis of Technical Element and Construction of Knowledge Graph for Smart Libraries

  • Cheng Xiufeng ,
  • Cao Qi ,
  • Jiang Kaichen ,
  • Zhou Mengdie
Expand
  • School of Information Management, Central China Normal University, Wuhan 430079

Received date: 2023-08-29

  Revised date: 2023-12-31

  Online published: 2024-05-16

Supported by

This work is supported by the general program of National Natural Science Foundation of China titled“Research on the Path of Smart Library Reading and Communication Service Based on Context Awareness”(Grant No.71974069).

摘要

[目的/意义] 挖掘智慧图书馆建设过程中所涉技术,揭示技术元素之间的结构关系,绘制智慧图书馆技术元素知识图谱,对智慧图书馆建设提供技术参考。[方法/过程] 以智慧图书馆相关文献为数据源,基于流水线方法,分别采用深度学习模型BERT-BiLSTM-CRF与RBERT自下而上地识别技术元素实体及其相关关系,针对技术性知识进行融合与扩展,继而绘制智慧图书馆技术元素知识图谱。[结果/结论] 所构建的知识图谱能够有效呈现智慧图书馆建设过程中相关领域技术及其结构关系,揭示相关技术利用现状与发展趋势,从而助力“十四五”期间图书馆的智慧化成功转型。

本文引用格式

程秀峰 , 曹琪 , 蒋开宸 , 周梦蝶 . 智慧图书馆建设过程中技术元素分析及知识图谱构建研究[J]. 图书情报工作, 2024 , 68(9) : 123 -136 . DOI: 10.13266/j.issn.0252-3116.2024.09.012

Abstract

[Purpose/Significance] By mining the technical elements in smart libraries and revealing the structural relationships, it draws a knowledge graph about them, and provides technical support for smart library construction.[Method/Process] The article took the relevant literatures on smart library as the data source. Firstly, based on the pipelining method, it adopted the deep learning models, BERT-BiLSTM-CRF and RBERT, to identify the technical entities and related relationships. And then it carried out knowledge fusion and extension for the technical knowledge. Finally, it drew the knowledge graph of technical elements in the smart libraries construction.[Result/Conclusion] The knowledge graph can effectively present the related technics and their relationships in the process of smart library construction, reveal the current status and development trend of that technics, and thus help the library's intelligent transformation during the "14th Five-Year Plan" period.

参考文献

[1] AITTOLA M, RYHNEN T, OJALA T. SmartLibrary-locationaware mobile library service[C]//CHITTARO L. Human computer interaction with mobile devices and services. Berlin:Springer, 2003:411-416.
[2] 新华社.中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要[EB/OL].[2023-12-10]. https://www.gov.cn/xinwen/2021-03/13/content_5592681.htm. (Xinhua News Agency. Outline of the 14th five-year plan (2021-2025) for national economic and social development and vision 2035 of the People's Republic of China[EB/OL].[2023-12-10]. https://www.gov.cn/xinwen/2021-03/13/content_5592681.htm.)
[3] 王世伟.论智慧图书馆的三大特点[J].中国图书馆学报, 2012, 38(6):22-28.(WANG S W. On three main features of the smart library[J]. Journal of library science in China, 2012, 38(6):22-28.)
[4] 夏立新,白阳,李成龙.基于SoLoMo的智慧自助图书馆服务体系研究[J].图书情报工作, 2015, 59(4):32-36, 82.(XIA L X, BAI Y, LI C L. The research of the service system to the smart self-service library based on the SoLoMo[J]. Library and information service, 2015, 59(4):32-36, 82.)
[5] 王家玲.基于智慧要素视角的智慧图书馆构建[J].图书馆工作与研究, 2017(7):41-44, 49.(WANG J L. Construction of the smart library based on perspective of smart elements[J]. Library work and study, 2017(7):41-44, 49.)
[6] 魏大威,李志尧,刘晶晶,等.基于区块链技术的智慧图书馆数字资源管理研究[J].中国图书馆学报, 2022, 48(2):4-12.(WEI D W, LI Z Y, LIU J J, et al. Digital resource management of smart library based on blockchain technology[J]. Journal of library science in China, 2022, 48(2):4-12.)
[7] 刘炜,陈晨,张磊. 5G与智慧图书馆建设[J].中国图书馆学报, 2019, 45(5):42-50.(LIU W, CHEN C, ZHANG L. 5G and smart library construction[J]. Journal of library science in China, 2019, 45(5):42-50.)
[8] 田杰. 5G信息管理背景下智慧图书馆VR服务平台构建[J].情报科学, 2021, 39(5):124-129.(TIAN J. Construction of VR service platform of intelligent library under the background of 5G information management[J]. Information science, 2021, 39(5):124-129.)
[9] 顾佐佐,陈虹,李晓玥,等.智慧图书馆动态知识服务体系构建与平台设计[J].情报科学, 2020, 38(10):119-124.(GU Z Z, CHEN H, LI X Y, et al. Construction of smart library knowledge service system and its platform design[J]. Information science, 2020, 38(10):119-124.)
[10] 李强.新一代人工智能+5G技术环境下的智慧图书馆新生态[J].图书馆理论与实践, 2021(3):52-57.(LI Q. A new ecology of smart libraries under the environment of new generation artificial intelligence+5G technology[J]. Library theory and practice, 2021(3):52-57.)
[11] 陈观婷,张震,黄奇.元宇宙视域下的智慧图书馆:融合人的智慧与物的智能的服务生态[J].图书情报工作, 2023, 67(10):15-25.(CHEN G T, ZHANG Z, HUANG Q. the smart library from the perspective of metaverse:a service ecology integrating wisdom of humans and intelligence of things[J]. Library and information service, 2023, 67(10):15-25.)
[12] 赵杨,张雪,范圣悦. AIGC驱动的智慧图书馆转型:框架、路径与挑战[J].情报理论与实践, 2023, 46(7):9-16.(ZHAO Y, ZHANG X, FAN S Y. AIGC-driven intelligent library transformation:framework, pathways and challenges[J]. information studies:theory&application, 2023, 46(7):9-16.)
[13] 徐芳.智慧图书馆生成式人工智能应用场景及其法律问题[J/OL].情报资料工作, 1-10[2024-02-27]. http://kns.cnki.net/kcms/detail/11.1448.G3.20231225.1753.005.html. (XU F. Smart library generative artificial intelligence application scenario and its legal issues[J/OL]. Information and documentation services, 1-10[2024-02-27]. http://kns.cnki.net/kcms/detail/11.1448.G3.20231225.1753.005.html.)
[14] 陈涛,刘炜,单蓉蓉,等.知识图谱在数字人文中的应用研究[J].中国图书馆学报, 2019, 45(6):34-49.(CHEN T, LIU W, SHAN R R, et al. Application of knowledge graph in digital humanities[J]. Journal of library science in China, 2019, 45(6):34-49.)
[15] ZOU X. A survey on application of knowledge graph[J]. Journal of physics:conference series, 2020, 1487(1):012016.
[16] 陈博立,鲜国建,赵瑞雪,等.科技文献问答式智能检索总体设计与关键技术探析[J].中国图书馆学报, 2023, 49(3):92-106.(CHEN B L, XIAN G J, ZHAO R X, et al. Overall design and key technology of Q&A style intelligent retrieval for scientific and technical literature[J]. Journal of library science in China, 2023, 49(3):92-106.)
[17] MA J, ZHONG M, WEN J, et al. RecKGC:integrating recommendation with knowledge graph completion[C]//International conference on advanced data mining and applications. Berlin:Springer, 2019:250-265.
[18] 毛瑞彬,朱菁,李爱文,等.基于自然语言处理的产业链知识图谱构建[J].情报学报, 2022, 41(3):287-299.(MAO R B, ZHU J, LI A W, et al. Construction of knowledge graph of industry chain based on natural language processing[J]. Journal of the China Society for Scientific and Technical Information, 2022, 41(3):287-299.)
[19] 李纲,王施运,毛进,等.面向态势感知的国家安全事件图谱构建研究[J].情报学报, 2021, 40(11):1164-1175.(LI G, WANG S Y, MAO J, et al. Construction of national security event map and its application for situation awareness[J]. Journal of the China Society for Scientific and Technical Information, 2021, 40(11):1164-1175.)
[20] GUO Q, ZHUANG F, QIN C, et al. A survey on knowledge graph-based recommender systems[J]. Scientia sinica informationis, 2020, 50(7):937-956.
[21] 黄茜茜,杨建林.基于司法判决书的知识图谱构建与知识服务应用分析[J].情报科学, 2022, 40(2):133-140.(HUANG X X, YANG J L. Construction of knowledge graph and analysis of knowledge service application based on judicial decision documents[J]. Information science, 2022, 40(2):133-140.)
[22] FENGJUN S, CHUNFU R. An entity recognition model based on deep learning fusion of text feature[J]. Information processing and management, 2022, 59(2):102841.
[23] BOLLACKER K, COOK R, TUFTS P. Freebase:a shared database of structured general human knowledge[C]//Proceedings of the 22nd national conference on artificial intelligence. Menlo Park:AAAI, 2007:1962-1963.
[24] AUER S, BIZER C, KOBILAROV G, et al. DBpedia:a nucleus for a web of open data[C]//International semantic Web conference, Asian semantic web conference. Heidelberg:LNISA, 2007, 4825:722-735.
[25] CHEN P, LU Y, ZHENG V W, et al. KnowEdu:a system to construct knowledge graph for education[J]. IEEE access, 2018, 6:31553-31563.
[26] PAYAL C, KEXIN H, MARINKA Z. Building a knowledge graph to enable precision medicine[J]. Scientific data, 2023, 10(1):67.
[27] 钱玲飞,崔晓蕾.基于数据增强的领域知识图谱构建方法研究[J].现代情报, 2022, 42(3):31-39.(QIAN L F, CUI X L. Research on construction method of domain knowledge graph based on transfer learning[J]. Journal of modern information, 2022, 42(3):31-39.)
[28] ROSSANEZ A, REIS J. Generating knowledge graphs from scientific literature of degenerative diseases[C]//Proceedings of the 4th international workshop on semantics-powered data mining and analytics. Aukland:SEPDA, 2019:12-23.
[29] WANG C, MA X, CHEN J, et al. Information extraction and knowledge graph construction from geoscience literature[J]. Computers&geosciences, 2018, 112:112-120.
[30] 赵雪芹,李天娥,曾刚.基于Neo4j的万里茶道数字资源知识图谱构建研究[J].情报资料工作, 2022, 43(5):89-97.(ZHAO X Q, LI T E, ZENG G. Analysis of the tea road digital resource knowledge map construction based on neo4j[J]. Information and documentation services, 2022, 43(5):89-97.)
[31] ETZIONI O, CAFARELLA M, DOWNEY D, et al. Unsupervised named-entity extraction from the web:an experimental study[J]. Artificial intelligence, 2005, 165(1):91-134.
[32] ZHANG S, ELHADAD N. Unsupervised biomedical named entity recognition:experiments with clinical and biological texts[J]. Journal biomedical information, 2013, 46(6):1-29.
[33] HAN H, WANG J, WANG X. A relation-oriented model with global context information for joint extraction of overlapping relations and entities[J]. Frontiers in neurorobotics, 2022, 16:914705.
[34] GORMLEY M R, YU M, DREDZE M. Improved relation extraction with feature-rich compositional embedding models[C]//Proceeding of the 2015 conference on empirical methods in natural language processing. Stroudsburg:ACL, 2015:1774-1784.
[35] PANG Y, LIU J, ZHOU J, et al. A deep neural network model for joint entity and relation extraction[J]. IEEE access, 2019, 7:179143-179150.
[36] ZGA B, YZA B, YHA B. Joint entity and relation extraction model based on rich semantics[J]. Neuro computing, 2021, 429:132-140.
[37] COLLOBERT R, WESTON J, BOTTOU L, et al. Natural language processing (almost) from scratch[J]. Journal of machine learning research, 2011, 12(1):2493-2537.
[38] 翟羽佳,田静文,赵玥.基于BERT-BiLSTM-CRF模型的算法术语抽取与创新演化路径构建研究[J].情报科学, 2022, 40(4):71-78.(ZHAI Y J, TIAN J W, ZHAO Y. Algorithm term extraction and innovation evolution path construction based on BERT-BiLSTM-CRF model[J]. Information science, 2022, 40(4):71-78.)
[39] 吴俊,程垚,郝瀚,等.基于BERT嵌入BiLSTM-CRF模型的中文专业术语抽取研究[J].情报学报, 2020, 39(4):409-418.(WU J, CHENG Y, HAO H, et al. Automatic extraction of Chinese terminology based on BERT embedding and BiLSTMCRF model[J]. Journal of the China Society for Scientific and Technical Information, 2020, 39(4):409-418.)
[40] PETERS M, NEUMANN M, IYYER M, et al. Deep contextualized word representations[C]//Proceedings of the 2018 conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies. New Orleans:ACL, 2018:2227-2237.
[41] DEVLIN J, CHANG M W, LEE K, et al. BERT:pre-training of deep bidirectional transformers for language understanding[C]//Proceedings of the 2019 conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies. Minneapolis:NAACL-HLT, 2019(1):4171-4186.
[42] HU W, MA B, LI Z, et al. A cross-media deep relationship classification method using discrimination information[J]. Information processing&management, 2020, 57(6):102344.
[43] LI Q, LI L, WANG W, et al. A comprehensive exploration of semantic relation extraction via pre-trained CNNs[J]. Knowledge-based systems, 2020, 194:105488.
[44] SOCHER R, HUVAL B, MANNING C D, et al. Semantic compositionality through recursive matrix-vector spaces[C]//Proceedings of the 2012 joint conference on empirical methods in natural language processing and computational natural language learning. Jeju Island:ACL, 2012:1201-1211.
[45] WU S, HE Y. Enriching pre-trained language model with entity information for relation classification[C]//Proceedings of the 28th ACM international conference on information and knowledge management. New York:ACM, 2019:2361-2364.
[46] 任亮,杜薇薇,刘伟利.面向科技文献知识元的知识图谱构建研究[J].情报科学, 2022, 40(9):26-31.(REN L, DU W W, LIU W L. The construction of knowledge graph for knowledge elements of scientific literature[J]. Information science, 2022, 40(9):26-31.)
[47] 罗凌,杨志豪,宋雅文,等.基于笔画ELMo和多任务学习的中文电子病历命名实体识别研究[J].计算机学报, 2020, 43(10):1943-1957.(LUO L, YANG Z H, SONG Y W, et al. Chinese clinical named entity recognition based on stroke ELMo and multi-task learning[J]. Chinese journal of computers, 2020, 43(10):1943-1957.)
[48] HRIPCSAK G, ROTHSCHILD A S. Agreement, the f-measure, and reliability in information retrieval[J]. Journal of the American Medical Informatics Association, 2005, 12(3):296-298.
[49] 刘金岭.基于语义密度的文本聚类研究[J].计算机工程, 2010, 36(5):81-83.(LIU J L. Study on text clustering based on semantic density[J]. Computer engineering, 2010, 36(5):81-83.)
[50] 赵洪,王芳.理论术语抽取的深度学习模型及自训练算法研究[J].情报学报, 2018, 37(9):923-938.(ZHAO H, WANG F. A deep learning model and self-training algorithm for theoretical terms extraction[J]. Journal of the China Society for Scientific and Technical Information, 2018, 37(9):923-938.)
[51] 李刚,朱学芳.面向图博档数字化服务融合的知识图谱构建与实现[J].情报科学, 2021, 39(12):155-164.(LI G, ZHU X F. Construction and implementation of knowledge graph for digital LMA service convergence[J]. Information science, 2021, 39(12):155-164.)
[52] 刘浏,王东波,黄水清,等.数字人文视野下的古汉语实体歧义研究[J].图书与情报, 2020, 195(5):115-124.(LIU L, WANG D B, HUANG S Q, et al. Research on ancient Chinese entity ambiguity in digital humanities[J]. Library&information, 2020, 195(5):115-124.)
文章导航

/