知识组织

基于查询意图的细粒度图书分面检索研究

  • 夏立新 ,
  • 龙存钰 ,
  • 胡畔 ,
  • 宋吉
展开
  • 华中师范大学信息管理学院 武汉 430079
夏立新,教授,博士生导师;胡畔,博士研究生;宋吉,硕士研究生。

收稿日期: 2023-08-04

  修回日期: 2024-01-03

  网络出版日期: 2024-05-17

基金资助

本文系国家社会科学基金重大项目“新时代我国文献信息资源保障体系重构研究”(项目编号:19ZDA345)研究成果之一。

A Study of Fine-Grained Book-Faceted Retrieval Based on Query Intent

  • Xia Lixin ,
  • Long Cunyu ,
  • Hu Pan ,
  • Song Ji
Expand
  • School of Information Management, Central China Normal University, Wuhan 430079

Received date: 2023-08-04

  Revised date: 2024-01-03

  Online published: 2024-05-17

Supported by

This work is supported by National Social Science Fund of China major project titled "Research on the reconstruction of literature and information resources guarantee system in China in the new era"(Grant No.19ZDA345).

摘要

[目的/意义] 构建基于用户评论的图书分面体系和图书查询意图的分面检索模型,提升用户图书检索体验。[方法/过程] 在调研大规模图书评论数据的基础上,立足图书评论数据特征进行细粒度图书分面体系构建,在此基础上,引入查询意图识别模块来构建图书分面检索模型,并进行原型系统的实现以验证模型的可行性和效果。[结果/结论] 通过原型系统的实现证实了所构建的细粒度分面体系能够有效帮助用户筛选和定位图书检索结果;提出的分面检索模型操作便捷,并能够结合用户的查询意图有效减少信息过载的问题,具有良好的用户体验。

本文引用格式

夏立新 , 龙存钰 , 胡畔 , 宋吉 . 基于查询意图的细粒度图书分面检索研究[J]. 图书情报工作, 2024 , 68(8) : 122 -132 . DOI: 10.13266/j.issn.0252-3116.2024.08.010

Abstract

[Purpose/Significance] Building a book-faceted system based on user comments and a faceted search model for book query intent can help to enhance user experience in book retrieval.[Method/Process] Based on the research of large-scale book comment data,a fine-grained book faceted system was constructed based on the characteristics of book comment data.On this basis,a query intent recognition module was introduced to construct a book faceted retrieval model,and a prototype system was implemented to verify the feasibility and effectiveness of the model.[Result/Conclusion] The implementation of the prototype system has confirmed that the constructed fine-grained faceted system can effectively help users filter and locate book retrieval result.The proposed faceted retrieval model is easy to operate and can effectively reduce information overload in conjunction with the user's query intent,and has a good user experience.

参考文献

[1] 林鑫,吴茜.文献资源发现系统分面检索功能比较研究[J].数字图书馆论坛, 2019(9):16-23.(LIN X, WU Q. Comparative study on faceted search function of literature resource discovery system[J]. Digital library forum, 2019(9):16-23.)
[2] 林鑫,龙存钰,罗宇.面向政府开放数据的分面检索研究[J].图书情报工作, 2021, 65(16):130-137.(LIN X, LONG C Y, LUO Y. Research on faceted search of government open data[J]. Library and information service, 2021, 65(16):130-137.)
[3] 李兵.基于查询意图识别的自适应图书分面检索研究[J].图书馆学研究, 2017(15):57-64.(LI B. Self-adaptive book information faceted search based on query intent identification[J]. Research on library science, 2017(15):57-64.)
[4] 曾金,张耀峰,黄新杰,等.面向用户评论的主题挖掘研究——以美团为例[J].情报科学, 2022, 40(11):78-84, 92.(ZENG J, ZHANG Y F, HUANG X J, et al. Topic mining for user comments:case study of Meituan[J]. Information science, 2022, 40(11):78-84, 92.)
[5] 章成志,童甜甜,周清清.基于细粒度评论挖掘的书评自动摘要研究[J].情报学报, 2021, 40(2):163-172.(ZHANG C Z, TONG T T, ZHOU Q Q. Automatic summarization of book reviews based on fine-grained review mining[J]. Journal of the China Society for Scientific and Technical Information, 2021, 40(2):163-172.)
[6] 王克勤,毋凤君.面向产品设计改进的在线评论挖掘[J].计算机工程与应用, 2019, 55(19):235-245, 252.(WANG K Q, WU F J. Online reviews mining for product design improvement[J]. Computer engineering and applications, 2019, 55(19):235-245, 252.)
[7] BENSOLTANE R, ZAKI T. Aspect-based sentiment analysis:an overview in the use of Arabic language[J]. Artificial intelligence review, 2022, 56(3):2325-2363.
[8] VIEIRA H S, SILVA A S D, CALADO P, et al. A distantly supervised approach for recognizing product mentions in user-generated content[J]. Journal of intelligent information systems, 2022, 59(3):543-566.
[9] ALTURAYEIF N, LUQMAN H, AHMED M. A systematic review of machine learning techniques for stance detection and its applications[J]. Neural computing and applications, 2023, 35(7):5113-5144.
[10] CELIK I, ABEL F, SIEHNDEL P. Adaptive faceted search on Twitter[C]//Proceedings of the workshop on semantic adaptive social Web. Girona:CEUR workshop proceedings, 2011, 730:39-44.
[11] DASH D, RAO J, MEGIDDO N, et al. Dynamic faceted search for discovery-driven analysis[C]//Proceedings of the 17th ACM conference on information and knowledge management. California:ACM, 2008:3-12.
[12] 翟姗姗,潘英增,胡畔,等.基于医学知识图谱的慢性病在线医疗社区分面检索研究[J].情报理论与实践, 2021, 44(1):195-203.(ZHAI S S, PAN Y Z, HU P, et al. Study on faceted retrieval of chronic diseases online medical community based on medical knowledge graph[J]. Information studies:theory&application, 2021, 44(1):195-203.)
[13] 胡昌平,林鑫.科技文献检索中基于主题词表分面化改造的分面构建[J].情报学报, 2015, 34(8):875-884.(HU C P, LIN X. Facet construction based on facet reform of thesaurus for scientific and technical literature retrieval system[J]. Journal of the China Society for Scientific and Technical Information, 2015, 34(8):875-884.)
[14] DEUSCHEL T, GREPPMEIER C, HUMM B G, et al. Semantically faceted navigation with topic pies[C]//ACM international conference on semantic systems. Leipzig:ACM, 2014:132-139.
[15] ARENAS M, GRAU B C, EVGENY E, et al. Towards semantic faceted search[C]//International conference on World Wide Web. Seoul:ACM, 2014:219-220.
[16] 桂思思,陆伟,张晓娟.基于查询表达式特征的时态意图识别研究[J].数据分析与知识发现, 2019, 3(3):66-75.(GUI S S, LU W, ZHANG X J. Temporal intent classification with query expression feature[J]. Data analysis and knowledge discovery, 2019, 3(3):66-75.)
[17] 贺国秀,张晓娟.查询意图自动分类的方法改进探讨[J].数字图书馆论坛, 2018(1):53-60.(HE G X, ZHANG X J. Discussion on the improvement of methods for automatic classification of query intent[J]. Digital library forum, 2018(1):53-60.)
[18] BRODER A. A Taxonomy of Web search[J]. ACM SIGIR Forum, 2002, 36(2):3-10.
[19] 付煜文,马志柔,刘杰,等.面向问题意图识别的深度主动学习方法[J].中文信息学报, 2021, 35(4):92-99, 109.(FU Y W, MA Z R, LIU J, et al. Deep active learning method for question intention recognition[J]. Journal of Chinese information processing, 2021, 35(4):92-99, 109.)
[20] 张森,王斌. Web信息查询意图分类技术综述[J].中文信息学报, 2008(22):75-82.(ZHANG S, WANG B. A Survey of Web Search Query Intention Classification[J]. Journal of Chinese information processing, 2008(22):75-82.)
[21] 陆伟,周红霞,张晓娟.查询意图研究综述[J].中国图书馆学报, 2013, 39(1):100-111.(LU W, ZHOU H X, ZHANG X J. Review of research on query intent[J]. Journal of library science in China, 2013, 39(1):100-111.)
[22] BERNARD J, JANSEN D, AMANDA S. Determining the user intent of Web search engine queries[C]//WWW 2007:Proceedings of the 16th international conference on World Wide Web. Banff:ACM, 2007:1149-1150.
[23] NGUYEN V B, KAN M Y. Functional faceted Web query analysis[C]//WWW 2007:Proceedings of the 16th international conference on world wide web, Banff:ACM, 2007:32-39.
[24] 桂思思,张晓娟.面向查询意图歧义性的多样化检索模型研究[J].情报科学, 2021, 39(12):39-45.(GUI S S, ZHANG X J. Diversity search on query intent of ambiguity[J]. Information science, 2021, 39(12):39-45.)
[25] KANG I, KIM G. Query type classification for web document retrieval[C]//Proceedings of the 26th annual international ACM SIGIR conference on research and development in information retrieval. Toronto:ACM, 2003:64-71.
[26] LEE U, LIU Z, CHO J. Automatic identification of user goals in web search[C]//WWW2005:Proceedings of the 14th international conference on World Wide Web. Chiba:ACM, 2005:391-401.
[27] TSAI M F, WU Y H. User Intent prediction search engine system based on query analysis and image recognition technologies[J]. The journal of supercomputing, 2023, 79(5):5327-5359.
[28] 谢豪,吴雪华,陈茜,等.融合多维特征的学术文献下载行为预测研究[J].图书情报工作, 2021, 65(12):112-121.(XIE H, WU X H, CHEN X, et al. Predicting download behavior of academic literature based on multi-dimensional features[J]. Library and information service, 2021, 65(12):112-121.)
[29] 叶千军.情报检索语言中的分面分析理论与实践[J].图书馆学通讯, 1986(4):61-70.(YE Q J, Theory and practice of faceted analysis in intelligence retrieval language[J]. Library science bulletin, 1986(4):61-70.)
[30] KOFLER C, LARSON M, HANJALIC A. User intent in multimedia search:a survey of the state of the art and future challenges[J]. ACM computing surveys, 2016(2):1-37.
[31] 胡伶霞.图书馆OPAC检索中基于词典的查询意图自动识别[J].图书馆学研究, 2016(23):72-76.(HU L X. Lexicon-based query intent identification for library OPAC system[J]. Research on library science, 2016(23):72-76.)
[32] 郭力洁. XML分面搜索的关键技术研究[D].保定:华北电力大学, 2013.(GUO L J. Research on key technologies of XML facet search[D]. Baoding:North China Electric Power University, 2013.)
文章导航

/