[1] 叶鹰,张家榕,张慧.知识流动与跨学科研究之关联[J].图书与情报, 2020(3):29-33.(YE Y, ZHANG J R, ZHANG H. The correlation between knowledge flow and interdisciplinary research[J]. Library and information, 2020(3):29-33.)
[2] 程术希,王芳展,席萌,等.高校跨学科研究产出的影响因素[J].科技管理研究, 2023, 43(21):105-111.(CHENG S X, WANG F Z, XI M, et al. Influencing factors of the interdisciplinary research output in universities[J]. Science and technology management research, 2023, 43(21):105-111.)
[3] 刘志忠.我国大学跨学科研究的空间障碍及其突破[J].江苏高教, 2024(1):64-71.(LIU Z Z. The spatial obstacles and breakthroughs of interdisciplinary research in Chinese universities[J]. Jiangsu higher education, 2024(1):64-71.)
[4] 侯玥然,闵超.基于引文网络的知识基因扩散研究[J].情报科学, 2021, 39(9):42-49.(HOU Y R, MIN C. Meme diffusion based on citation network[J]. Information science, 2021, 39(9):42-49.)
[5] ZHANG Y, ZHANG G, CHEN H, et al. Topic analysis and forecasting for science, technology and innovation:methodology with a case study focusing on big data research[J]. Technological forecasting and social change, 2016, 105:179-191.
[6] HARRIS Z S. Distributional structure[J]. Word, 1954, 10(2/3):146-162.
[7] CHEN B, TSUTSUI S, DING Y, et al. Understanding the topic evolution in a scientific domain:an exploratory study for the field of information retrieval[J]. Journal of informetrics, 2017, 11(4):1175-1189.
[8] CHEN B, DING Y, MA F. Semantic word shifts in a scientific domain[J]. Scientometrics, 2018, 117:211-226.
[9] ZHANG T, SUN R, FENSEL J, et al. Understanding the domain development through a word status observation model[J]. Journal of informetrics, 2023, 17(2):101395.
[10] ZHAI Y, DING Y, ZHANG H. Innovation adoption:broadcasting versus virality[J]. Journal of the Association for Information Science and Technology, 2021, 72(4):403-416.
[11] 韩毅.引文网络主路径的结构洞功能探索——以知识管理领域为例[J].图书情报工作, 2012, 56(24):65-70.(HAN Y. Structural holes functions of main path in citation network:taking knowledge management field as an example[J]. Library and information service, 2012, 56(24):65-70.)
[12] LEWISON G, RIPPON I, WOODING S. Tracking knowledge diffusion through citations[J]. Research evaluation, 2005, 14(1):5-14.
[13] ZHAI Y, DING Y, WANG F. Measuring the diffusion of an innovation:A citation analysis[J]. Journal of the Association for Information Science and Technology, 2018, 69(3):368-379.
[14] ZHANG L, THIJS B, GLÄNZEL W. The diffusion of H-related literature a case study of microelectronics[J]. Journal of informetrics, 2011, 5(4):583-593.
[15] 张云中,姚佳颖.创新扩散驱动的领域隐性知识地图构建:以微电子领域为例[J].图书情报工作, 2023, 67(5):130-141.(ZHANG Y Z, YAO J Y. Domain tacit knowledge map construction driven by diffusion of innovation:a case study of microelectronics[J]. Library and information service, 2023, 67(5):130-141.)
[16] 韩毅,童迎,夏慧.领域演化结构识别的主路径方法与高被引论文方法对比研究[J].图书情报工作, 2013, 57(3):11-16.(HAN Y, TONG Y, XIA H. Comparative study of main path analysis and highly-cited-paper clustering to identify domain evolving structure[J]. Library and information service, 2013, 57(3):11-16.)
[17] 罗杰斯.创新的扩散[M].唐兴通,郑常青,张延臣,译.北京:电子工业出版社, 2016.(ROGERS E M. Diffusion of innovations[M]. TANG X T, ZHENG C Q, ZHANG Y C, trans. Beijing:Publishing House of Electronics Industry, 2016.)
[18] ZHANG X, YU P, YAN J, et al. Using diffusion of innovation theory to understand the factors impacting patient acceptance and use of consumer e-health innovations:a case study in a primary care clinic[J]. BMC health services research, 2015, 15:71(1-15).
[19] 翟羽佳,刘彤,高凯悦,等.竞争策略视角下科学创新扩散采纳者分类研究[J].图书情报工作, 2023, 67(4):68-79.(ZHAI Y J, LIU TONG, GAO K Y, et al. Research on adopter classification in scientific innovation diffusion from a competitive strategy perspective[J]. Library and information service, 2023, 67(4):68-79.)
[20] 宋歌.学术创新的扩散过程研究[J].中国图书馆学报, 2015, 41(1):62-75.(SONG G. The diffusion process of academic innovation[J]. Journal of library science in China, 2015, 41(1):62-75.)
[21] KUHN T S. The structure of scientific revolutions[M]. University of Chicago Press, 2012:12.
[22] 王倩,钱力,刘细文.知识演化分析的技术方法研究综述[J].图书情报工作, 2023, 67(7):121-134.(WANG Q, QIAN L, LIU X W. A review on technical methods for knowledge evolution analysis[J]. Library and information service, 2023, 67(7):121-134.)
[23] GARFIELD E, MERTON R K. Citation indexing:its theory and application in science, technology, and humanities[M]. New York:Wiley, 1979.
[24] CALLON M, COURTIAL J P, Turner W A, et al. From translations to problematic networks:An introduction to co-word analysis[J]. Social science information, 1983, 22(2):191-235.
[25] NEWMAN M E J. The structure and function of complex networks[J]. SIAM review, 2003, 45(2):167-256.
[26] 肖雪,陈云伟,邓勇.引文网络的社团划分研究进展综述[J].情报杂志, 2016, 35(4):125-130.(XIAO X, CHEN Y W, DENG Y. Development of community discovery in citation networks[J]. Journal of intelligence, 2016, 35(4):125-130.)
[27] DEERWESTER S, DUMAIS S T, FURNAS G W, et al. Indexing by latent semantic analysis[J]. Journal of the American Society for Information Science, 1990, 41(6):391-407.
[28] BLEI D M, NG A Y, JORDAN M I. Latent Dirichlet allocation[J]. Journal of machine learning research, 2003, 3:993-1022.
[29] LEE H, KANG P. Identifying core topics in technology and innovation management studies:a topic model approach[J]. The journal of technology transfer, 2018, 43(5):1291-1317.
[30] 李跃艳,王昊,邓三鸿,等.近十年信息检索领域的研究热点与演化趋势研究——基于SIGIR会议论文的分析[J].数据分析与知识发现, 2021, 5(4):13-24.(LI Y Y, WANG H, DENG S H, et al. Research trends of information retrieval:case study of SIGIR conference papers[J]. Data analysis and knowledge discovery, 2021, 5(4):13-24.)
[31] BLEI D M, LAFFERTY J D. Dynamic topic models[C]//Proceedings of the 23rd international conference on machine learning. New York:ACM, 2006:113-120.
[32] M I K O L O V T, S U T S K E V E R I, C H E N K, e t a l. Distributed representations of words and phrases and their compositionality[C]//Advances in neural information processing systems 26. San Francisco:Curran Associates, 2013:3111-3119.
[33] HAMILTON W L, LESKOVEC J, JURAFSKY D. Diachronic word embeddings reveal statistical laws of semantic change[C]//Proceedings of the 54th annual meeting of the Association for Computational Linguistics. Kerrville:ACL, 2016:1485-1501.
[34] VYLOMOVA E, HASLAM N. Semantic changes in harm-related concepts in English[J]. Computational approaches to semantic change, 2021, 6:93-121.
[35] ORHAN U, TULU C N. A novel embedding approach to learn word vectors by weighting semantic relations:SemSpace[J]. Expert systems with applications, 2021, 180:115146.
[36] SHANNON C E. A mathematical theory of communication[J]. Bell system technical journal, 1948, 27(3):379-423.
[37] ALMEIDA F, XEXÉO G. Word embeddings:a survey[EB/OL].[2024-05-04]. https://arxiv.org/abs/1901.09069.
[38] NEWMAN M E J. Power laws, pareto distributions and Zipf's law[J]. Contemporary physics, 2005, 46(5):323-351.
[39] MA J, WANG L, ZHANG Y R, et al. An integrated latent Dirichlet allocation and word2vec method for generating the topic evolution of mental models from global to local[J]. Expert systems with applications, 2023, 212:118695.
[40] MANNING C, SCHUTZE H. Foundations of statistical natural language processing[M]. Cambridge:MIT Press, 1999:304.
[41] WEED J, BERTHET Q. Estimation of smooth densities in Wasserstein distance[C]//Conference on learning theory. Cambridge:PMLR, 2019:3118-3119.
[42] VILLANI C. Optimal transport:old and new[M]. Berlin:Springer, 2009:105-118.
[43] DOBRUSHIN R L. Prescribing a system of random variables by conditional distributions[J]. Theory of probability&its applications, 1970, 15(3):458-486.
[44] ARJOVSKY M, CHINTALA S, BOTTOU L. Wasserstein generative adversarial networks[C]//International conference on machine learning. Cambridge:PMLR, 2017:214-223.
[45] GULRAJANI I, AHMED F, ARJOVSKY M, et al. Improved training of Wasserstein gans[C]//Advances in neural information processing systems 30. San Francisco:Curran Associates, 2017:5767-5777.
[46] PANARETOS V M, ZEMEL Y. Statistical aspects of Wasserstein distances[J]. Annual review of statistics and its application, 2019, 6:405-431.
[47] LEVINA E, BICKEL P. The earth mover's distance is the mallows distance:some insights from statistics[C]//Proceedings eighth IEEE international conference on computer vision. New York:IEEE, 2001, 2:251-256.
[48] WATTS D J, STROGATZ S H. Collective dynamics of'smallworld'networks[J]. Nature, 1998, 393(6684):440-442.
[49] WU L, WANG D, EVANS J A. Large teams develop and small teams disrupt science and technology[J]. Nature, 2019, 566(7744):378-382.
[50] SEMENOVA E. The small world of German CEOs:a multimethod analysis of the affiliation network structure[J]. Journal of management and governance, 2022, 26(2):519-550.
[51] PONCE C J, ROLDÁN F. Cartels as small world networks:evidence from graphite electrode cartel[J]. Review of network economics, 2017, 16(1):27-61.
[52] CHEN Y Y, JAW Y L. How do business groups'small world networks effect diversification, innovation, and internationalization?[J]. Asia pacific journal of management, 2014, 31:1019-1044.
[53] FLEMING L, KING III C, JUDA A I. Small worlds and regional innovation[J]. Organization science, 2007, 18(6):938-954.
[54] ZHANG G, DUAN H, ZHOU J. Small worldliness, Chinese culture, and firm innovation performance:an empirical study based on patent collaboration data of China[J]. Asian journal of technology innovation, 2015, 23(2):189-204.
[55] XU M, PAN Q, MUSCOLONI A, et al. Modular gateway-ness connectivity and structural core organization in maritime network science[J]. Nature communications, 2020, 11(1):2849.
[56] ZHANG Y, LI H. Price volatility on investor's social network[C]//Complex systems modeling and simulation in economics and finance 21. Cham:Springer, 2018:181-192.
[57] LI S, WANG C. Network structure, portfolio diversification and systemic risk[J]. Journal of management science and engineering, 2021, 6(2):235-245.
[58] LI S, HE J. Resilience of interbank market networks to shocks[J]. Discrete dynamics in nature and society, 2011.
[59] CHEN D, LU J, ZHOU H, et al. Glucose metabolic brain network differences between Chinese patients with lewy body dementia and healthy control[J]. Behavioural neurology, 2018, 2018:8420658.
[60] LIU Y, DUAN Y, HE Y, et al. Altered topological organization of white matter structural networks in patients with neuromyelitis optica[J]. Plos one, 2012, 7(11):e48846.
[61] NIR T, JAHANSHAD N, JACK C R, et al. Small world network measures predict white matter degeneration in patients with early-stage mild cognitive impairment[C]//20129th IEEE international symposium on biomedical imaging. New York:IEEE, 2012:1405-1408.
[62] IMMS P, CLEMENTE A, COOK M, et al. The structural connectome in traumatic brain injury:a meta-analysis of graph metrics[J]. Neuroscience&biobehavioral reviews, 2019, 99:128-137.
[63] STAM C J, VAN STRAATEN E C W. The organization of physiological brain networks[J]. Clinical neurophysiology, 2012, 123(6):1067-1087.
[64] SONG L, MISHRA V, OUYANG M, et al. Human fetal brain connectome:structural network development from middle fetal stage to birth[J]. Frontiers in neuroscience, 2017, 11:561.
[65] JÄNCKE L, LANGER N. A strong parietal hub in the smallworld network of coloured-hearing synaesthetes during resting state EEG[J]. Journal of neuropsychology, 2011, 5(2):178-202.
[66] NUNES A, DA GAMA M M T, GOMES M G M. Localized contacts between hosts reduce pathogen diversity[J]. Journal of theoretical biology, 2006, 241(3):477-487.
[67] VASALOU C, HERZOG E D, HENSON M A. Small-world network models of intercellular coupling predict enhanced synchronization in the suprachiasmatic nucleus[J]. Journal of biological rhythms, 2009, 24(3):243-254.
[68] MURRAY J, LU T, WETTIN P, et al. Dual-level DVFS-enabled millimeter-wave wireless NoC architectures[J]. ACM journal on emerging technologies in computing systems, 2014, 10(4):1-27.
[69] XU S, ZHOU H, LI C, et al. Vulnerability assessment of power grid based on complex network theory[C]//2009 Asia-Pacific power and energy engineering conference. New York:IEEE, 2009:1-4.
[70] PETRIDIS N E, PETRIDIS K, STIAKAKIS E. Global e-waste trade network analysis[J]. Resources, conservation and recycling, 2020, 158:104742.
[71] WANG Y, WANG Z, ZAMEER H. Structural characteristics and evolution of the"international trade-carbon emissions"network in equipment manufacturing industry:international evidence in the perspective of global value chains[J]. Environmental science and pollution research, 2021, 28:25886-25905.