情报研究

基于分布式语义分析的学术创新跨领域演化探析

  • 陈柏彤 ,
  • 康宇杰
展开
  • 上海大学文化遗产与信息管理学院 上海 200444
陈柏彤,副教授,博士,硕士生导师, E-mail: baitongchen@shu.edu.cn;康宇杰,硕士研究生。

收稿日期: 2023-11-29

  修回日期: 2024-02-25

  网络出版日期: 2024-06-29

基金资助

本文系国家社会科学基金青年项目“基于分布式语义分析的学术创新演化模式研究”(项目编号: 21CTQ037)研究成果之一。

Cross-domain Evolution of Academic Innovation Based on Distributional Semantic Analysis

  • Chen Baitong ,
  • Kang Yujie
Expand
  • School of Cultural Heritage and Information Management, Shanghai University, Shanghai 200444
Chen Baitong, associate professor, PhD, master supervisor, E-mail: baitongchen@shu.edu.cn; Kang Yujie, master candidate.

Received date: 2023-11-29

  Revised date: 2024-02-25

  Online published: 2024-06-29

Supported by

This work is supported by the youth project of National Social Science Fund of China titled “Research on the Evolutionary Pattern of Academic Innovation Based on Distributional Semantic Analysis” (Grant No. 21CTQ037).

摘要

[ 目的 / 意义 ] 学术创新研究对于把握科学发展规律,促进科研合作交流至关重要。针对当前学术创新相关研究在创新演化分析方面的不足,基于分布式语义分析技术,通过上下文挖掘考察同一学术创新在不同领域中的应用场景变化,跟踪并探析学术创新的跨领域演化特征。 [ 方法 / 过程 ] 围绕上述研究问题,首先构建探索性研究方案,包括学术创新的跨领域分布测度、分布式语义表征、领域间上下文差异性测度和领域演化特征词提取,其后选取具体创新对研究方案进行实证检验。 [ 结果 / 结论 ] 结果表明,构建的研究方案在实际应用中能够有效把握学术创新的跨领域分布情况及跨领域演化特征,相关成果有效拓展学术创新研究范畴,并将知识演化研究推进到创新实体层面,实现对具体创新在不同领域中的差异性演化情况的跟踪。

本文引用格式

陈柏彤 , 康宇杰 . 基于分布式语义分析的学术创新跨领域演化探析[J]. 图书情报工作, 2024 , 68(12) : 95 -108 . DOI: 10.13266/j.issn.0252-3116.2024.12.008

Abstract

[Purpose/Significance] Research on academic innovation is crucial for understanding the laws of scientific development and promoting collaboration and communication in scientific research. For the inadequacies in current research on innovation evolution analysis, this study utilizes distributional semantic analysis techniques to examine the application scenario changes of the same academic innovation in different fields by mining contextual information, and tracks and explores the cross-domain evolutionary characteristics of academic innovation. [Method/Process] To address the aforementioned research questions, it first conducted an exploratory research plan, including cross-domain distribution measures, distributional semantic representation, inter-domain contextual differences measures, and feature term extraction of domain evolution of academic innovation. Subsequently, it selected a specific innovation to empirically test the research plan. [Result/Conclusion] The results demonstrate that the research plan constructed in this study effectively captures the cross-domain distribution and evolutionary characteristics of academic innovation in practical applications. The findings expand the scope of academic innovation research and further knowledge evolution research into the innovation entity level, enabling the tracking of differential evolutionary patterns of specific innovations across different domains.

参考文献

[1] 叶鹰,张家榕,张慧.知识流动与跨学科研究之关联[J].图书与情报, 2020(3):29-33.(YE Y, ZHANG J R, ZHANG H. The correlation between knowledge flow and interdisciplinary research[J]. Library and information, 2020(3):29-33.)
[2] 程术希,王芳展,席萌,等.高校跨学科研究产出的影响因素[J].科技管理研究, 2023, 43(21):105-111.(CHENG S X, WANG F Z, XI M, et al. Influencing factors of the interdisciplinary research output in universities[J]. Science and technology management research, 2023, 43(21):105-111.)
[3] 刘志忠.我国大学跨学科研究的空间障碍及其突破[J].江苏高教, 2024(1):64-71.(LIU Z Z. The spatial obstacles and breakthroughs of interdisciplinary research in Chinese universities[J]. Jiangsu higher education, 2024(1):64-71.)
[4] 侯玥然,闵超.基于引文网络的知识基因扩散研究[J].情报科学, 2021, 39(9):42-49.(HOU Y R, MIN C. Meme diffusion based on citation network[J]. Information science, 2021, 39(9):42-49.)
[5] ZHANG Y, ZHANG G, CHEN H, et al. Topic analysis and forecasting for science, technology and innovation:methodology with a case study focusing on big data research[J]. Technological forecasting and social change, 2016, 105:179-191.
[6] HARRIS Z S. Distributional structure[J]. Word, 1954, 10(2/3):146-162.
[7] CHEN B, TSUTSUI S, DING Y, et al. Understanding the topic evolution in a scientific domain:an exploratory study for the field of information retrieval[J]. Journal of informetrics, 2017, 11(4):1175-1189.
[8] CHEN B, DING Y, MA F. Semantic word shifts in a scientific domain[J]. Scientometrics, 2018, 117:211-226.
[9] ZHANG T, SUN R, FENSEL J, et al. Understanding the domain development through a word status observation model[J]. Journal of informetrics, 2023, 17(2):101395.
[10] ZHAI Y, DING Y, ZHANG H. Innovation adoption:broadcasting versus virality[J]. Journal of the Association for Information Science and Technology, 2021, 72(4):403-416.
[11] 韩毅.引文网络主路径的结构洞功能探索——以知识管理领域为例[J].图书情报工作, 2012, 56(24):65-70.(HAN Y. Structural holes functions of main path in citation network:taking knowledge management field as an example[J]. Library and information service, 2012, 56(24):65-70.)
[12] LEWISON G, RIPPON I, WOODING S. Tracking knowledge diffusion through citations[J]. Research evaluation, 2005, 14(1):5-14.
[13] ZHAI Y, DING Y, WANG F. Measuring the diffusion of an innovation:A citation analysis[J]. Journal of the Association for Information Science and Technology, 2018, 69(3):368-379.
[14] ZHANG L, THIJS B, GLÄNZEL W. The diffusion of H-related literature a case study of microelectronics[J]. Journal of informetrics, 2011, 5(4):583-593.
[15] 张云中,姚佳颖.创新扩散驱动的领域隐性知识地图构建:以微电子领域为例[J].图书情报工作, 2023, 67(5):130-141.(ZHANG Y Z, YAO J Y. Domain tacit knowledge map construction driven by diffusion of innovation:a case study of microelectronics[J]. Library and information service, 2023, 67(5):130-141.)
[16] 韩毅,童迎,夏慧.领域演化结构识别的主路径方法与高被引论文方法对比研究[J].图书情报工作, 2013, 57(3):11-16.(HAN Y, TONG Y, XIA H. Comparative study of main path analysis and highly-cited-paper clustering to identify domain evolving structure[J]. Library and information service, 2013, 57(3):11-16.)
[17] 罗杰斯.创新的扩散[M].唐兴通,郑常青,张延臣,译.北京:电子工业出版社, 2016.(ROGERS E M. Diffusion of innovations[M]. TANG X T, ZHENG C Q, ZHANG Y C, trans. Beijing:Publishing House of Electronics Industry, 2016.)
[18] ZHANG X, YU P, YAN J, et al. Using diffusion of innovation theory to understand the factors impacting patient acceptance and use of consumer e-health innovations:a case study in a primary care clinic[J]. BMC health services research, 2015, 15:71(1-15).
[19] 翟羽佳,刘彤,高凯悦,等.竞争策略视角下科学创新扩散采纳者分类研究[J].图书情报工作, 2023, 67(4):68-79.(ZHAI Y J, LIU TONG, GAO K Y, et al. Research on adopter classification in scientific innovation diffusion from a competitive strategy perspective[J]. Library and information service, 2023, 67(4):68-79.)
[20] 宋歌.学术创新的扩散过程研究[J].中国图书馆学报, 2015, 41(1):62-75.(SONG G. The diffusion process of academic innovation[J]. Journal of library science in China, 2015, 41(1):62-75.)
[21] KUHN T S. The structure of scientific revolutions[M]. University of Chicago Press, 2012:12.
[22] 王倩,钱力,刘细文.知识演化分析的技术方法研究综述[J].图书情报工作, 2023, 67(7):121-134.(WANG Q, QIAN L, LIU X W. A review on technical methods for knowledge evolution analysis[J]. Library and information service, 2023, 67(7):121-134.)
[23] GARFIELD E, MERTON R K. Citation indexing:its theory and application in science, technology, and humanities[M]. New York:Wiley, 1979.
[24] CALLON M, COURTIAL J P, Turner W A, et al. From translations to problematic networks:An introduction to co-word analysis[J]. Social science information, 1983, 22(2):191-235.
[25] NEWMAN M E J. The structure and function of complex networks[J]. SIAM review, 2003, 45(2):167-256.
[26] 肖雪,陈云伟,邓勇.引文网络的社团划分研究进展综述[J].情报杂志, 2016, 35(4):125-130.(XIAO X, CHEN Y W, DENG Y. Development of community discovery in citation networks[J]. Journal of intelligence, 2016, 35(4):125-130.)
[27] DEERWESTER S, DUMAIS S T, FURNAS G W, et al. Indexing by latent semantic analysis[J]. Journal of the American Society for Information Science, 1990, 41(6):391-407.
[28] BLEI D M, NG A Y, JORDAN M I. Latent Dirichlet allocation[J]. Journal of machine learning research, 2003, 3:993-1022.
[29] LEE H, KANG P. Identifying core topics in technology and innovation management studies:a topic model approach[J]. The journal of technology transfer, 2018, 43(5):1291-1317.
[30] 李跃艳,王昊,邓三鸿,等.近十年信息检索领域的研究热点与演化趋势研究——基于SIGIR会议论文的分析[J].数据分析与知识发现, 2021, 5(4):13-24.(LI Y Y, WANG H, DENG S H, et al. Research trends of information retrieval:case study of SIGIR conference papers[J]. Data analysis and knowledge discovery, 2021, 5(4):13-24.)
[31] BLEI D M, LAFFERTY J D. Dynamic topic models[C]//Proceedings of the 23rd international conference on machine learning. New York:ACM, 2006:113-120.
[32] M I K O L O V T, S U T S K E V E R I, C H E N K, e t a l. Distributed representations of words and phrases and their compositionality[C]//Advances in neural information processing systems 26. San Francisco:Curran Associates, 2013:3111-3119.
[33] HAMILTON W L, LESKOVEC J, JURAFSKY D. Diachronic word embeddings reveal statistical laws of semantic change[C]//Proceedings of the 54th annual meeting of the Association for Computational Linguistics. Kerrville:ACL, 2016:1485-1501.
[34] VYLOMOVA E, HASLAM N. Semantic changes in harm-related concepts in English[J]. Computational approaches to semantic change, 2021, 6:93-121.
[35] ORHAN U, TULU C N. A novel embedding approach to learn word vectors by weighting semantic relations:SemSpace[J]. Expert systems with applications, 2021, 180:115146.
[36] SHANNON C E. A mathematical theory of communication[J]. Bell system technical journal, 1948, 27(3):379-423.
[37] ALMEIDA F, XEXÉO G. Word embeddings:a survey[EB/OL].[2024-05-04]. https://arxiv.org/abs/1901.09069.
[38] NEWMAN M E J. Power laws, pareto distributions and Zipf's law[J]. Contemporary physics, 2005, 46(5):323-351.
[39] MA J, WANG L, ZHANG Y R, et al. An integrated latent Dirichlet allocation and word2vec method for generating the topic evolution of mental models from global to local[J]. Expert systems with applications, 2023, 212:118695.
[40] MANNING C, SCHUTZE H. Foundations of statistical natural language processing[M]. Cambridge:MIT Press, 1999:304.
[41] WEED J, BERTHET Q. Estimation of smooth densities in Wasserstein distance[C]//Conference on learning theory. Cambridge:PMLR, 2019:3118-3119.
[42] VILLANI C. Optimal transport:old and new[M]. Berlin:Springer, 2009:105-118.
[43] DOBRUSHIN R L. Prescribing a system of random variables by conditional distributions[J]. Theory of probability&its applications, 1970, 15(3):458-486.
[44] ARJOVSKY M, CHINTALA S, BOTTOU L. Wasserstein generative adversarial networks[C]//International conference on machine learning. Cambridge:PMLR, 2017:214-223.
[45] GULRAJANI I, AHMED F, ARJOVSKY M, et al. Improved training of Wasserstein gans[C]//Advances in neural information processing systems 30. San Francisco:Curran Associates, 2017:5767-5777.
[46] PANARETOS V M, ZEMEL Y. Statistical aspects of Wasserstein distances[J]. Annual review of statistics and its application, 2019, 6:405-431.
[47] LEVINA E, BICKEL P. The earth mover's distance is the mallows distance:some insights from statistics[C]//Proceedings eighth IEEE international conference on computer vision. New York:IEEE, 2001, 2:251-256.
[48] WATTS D J, STROGATZ S H. Collective dynamics of'smallworld'networks[J]. Nature, 1998, 393(6684):440-442.
[49] WU L, WANG D, EVANS J A. Large teams develop and small teams disrupt science and technology[J]. Nature, 2019, 566(7744):378-382.
[50] SEMENOVA E. The small world of German CEOs:a multimethod analysis of the affiliation network structure[J]. Journal of management and governance, 2022, 26(2):519-550.
[51] PONCE C J, ROLDÁN F. Cartels as small world networks:evidence from graphite electrode cartel[J]. Review of network economics, 2017, 16(1):27-61.
[52] CHEN Y Y, JAW Y L. How do business groups'small world networks effect diversification, innovation, and internationalization?[J]. Asia pacific journal of management, 2014, 31:1019-1044.
[53] FLEMING L, KING III C, JUDA A I. Small worlds and regional innovation[J]. Organization science, 2007, 18(6):938-954.
[54] ZHANG G, DUAN H, ZHOU J. Small worldliness, Chinese culture, and firm innovation performance:an empirical study based on patent collaboration data of China[J]. Asian journal of technology innovation, 2015, 23(2):189-204.
[55] XU M, PAN Q, MUSCOLONI A, et al. Modular gateway-ness connectivity and structural core organization in maritime network science[J]. Nature communications, 2020, 11(1):2849.
[56] ZHANG Y, LI H. Price volatility on investor's social network[C]//Complex systems modeling and simulation in economics and finance 21. Cham:Springer, 2018:181-192.
[57] LI S, WANG C. Network structure, portfolio diversification and systemic risk[J]. Journal of management science and engineering, 2021, 6(2):235-245.
[58] LI S, HE J. Resilience of interbank market networks to shocks[J]. Discrete dynamics in nature and society, 2011.
[59] CHEN D, LU J, ZHOU H, et al. Glucose metabolic brain network differences between Chinese patients with lewy body dementia and healthy control[J]. Behavioural neurology, 2018, 2018:8420658.
[60] LIU Y, DUAN Y, HE Y, et al. Altered topological organization of white matter structural networks in patients with neuromyelitis optica[J]. Plos one, 2012, 7(11):e48846.
[61] NIR T, JAHANSHAD N, JACK C R, et al. Small world network measures predict white matter degeneration in patients with early-stage mild cognitive impairment[C]//20129th IEEE international symposium on biomedical imaging. New York:IEEE, 2012:1405-1408.
[62] IMMS P, CLEMENTE A, COOK M, et al. The structural connectome in traumatic brain injury:a meta-analysis of graph metrics[J]. Neuroscience&biobehavioral reviews, 2019, 99:128-137.
[63] STAM C J, VAN STRAATEN E C W. The organization of physiological brain networks[J]. Clinical neurophysiology, 2012, 123(6):1067-1087.
[64] SONG L, MISHRA V, OUYANG M, et al. Human fetal brain connectome:structural network development from middle fetal stage to birth[J]. Frontiers in neuroscience, 2017, 11:561.
[65] JÄNCKE L, LANGER N. A strong parietal hub in the smallworld network of coloured-hearing synaesthetes during resting state EEG[J]. Journal of neuropsychology, 2011, 5(2):178-202.
[66] NUNES A, DA GAMA M M T, GOMES M G M. Localized contacts between hosts reduce pathogen diversity[J]. Journal of theoretical biology, 2006, 241(3):477-487.
[67] VASALOU C, HERZOG E D, HENSON M A. Small-world network models of intercellular coupling predict enhanced synchronization in the suprachiasmatic nucleus[J]. Journal of biological rhythms, 2009, 24(3):243-254.
[68] MURRAY J, LU T, WETTIN P, et al. Dual-level DVFS-enabled millimeter-wave wireless NoC architectures[J]. ACM journal on emerging technologies in computing systems, 2014, 10(4):1-27.
[69] XU S, ZHOU H, LI C, et al. Vulnerability assessment of power grid based on complex network theory[C]//2009 Asia-Pacific power and energy engineering conference. New York:IEEE, 2009:1-4.
[70] PETRIDIS N E, PETRIDIS K, STIAKAKIS E. Global e-waste trade network analysis[J]. Resources, conservation and recycling, 2020, 158:104742.
[71] WANG Y, WANG Z, ZAMEER H. Structural characteristics and evolution of the"international trade-carbon emissions"network in equipment manufacturing industry:international evidence in the perspective of global value chains[J]. Environmental science and pollution research, 2021, 28:25886-25905.
文章导航

/