专题:数字人文研究

数据、故事与洞见维度下的数据故事评价体系构建及实证研究

  • 孙智中
展开
  • 河南大学新闻与传播学院 开封 475004
孙智中,讲师,博士,硕士生导师,E-mail:szz@henu.edu.cn。

收稿日期: 2023-12-22

  修回日期: 2024-02-28

  网络出版日期: 2024-07-09

基金资助

本文系教育部人文社会科学基金项目“基于数据科学的信息资源管理研究范式创新”(项目编号:20YJA870003)研究成果之一。

Construction and Empirical Study of Data Storytelling Evaluation System Under Data, Story and Insight Dimensions

  • Sun Zhizhong
Expand
  • School of Journalism and Communication, Henan University, Kaifeng 475004

Received date: 2023-12-22

  Revised date: 2024-02-28

  Online published: 2024-07-09

Supported by

This work is supported by the Humanities and Social Science Foundation of the Ministry of Education in China project titled“Innovation of research paradigm in information resource management based on data science” (Grant No. 20YJA870003).

摘要

[目的/意义] 数据故事涉及数据的利用、呈现和传播过程,能够激发受众行动,是数据时代实现数据价值的重要手段。但目前学界和业界对数据故事质量的认识仍较为表面化和主观化,缺乏理论支撑和客观测度,不能很好地回答什么是“好的”数据故事这一基本问题。据此现状,构建评价的理论模型和定量的评价体系,可丰富数据故事的理论知识,为实践活动提供诊断和改进工具。 [方法/过程] 以叙事学理论为基础,提出基于数据、故事和洞见 3 个核心维度的评价模型,并使用数学公式刻画评价模型的 3 种类型和 7 种子类型,为评价体系的构建提供理论支撑。立足于定量和可操作性原则,提出包含 9 个度量指标的评价体系,并通过实证研究验证其信效度。 [结果/结论] 研究结果表明,构建的评价体系可信并有效;高质量的数据故事应具备数据准确、包含必要细节、数据源规范等特征;评价体系和作品所对应的评价模型类型可用于作品的诊断和改进。

本文引用格式

孙智中 . 数据、故事与洞见维度下的数据故事评价体系构建及实证研究[J]. 图书情报工作, 2024 , 68(13) : 41 -52 . DOI: 10.13266/j.issn.0252-3116.2024.13.004

Abstract

[Purpose/Significance] Data storytelling involves the processes of utilizing, presenting, and disseminating data, capable of inspiring audience action. It constitutes a crucial means for realizing the data value in the data era. However, the current understanding of the data storytelling quality in both academia and industry remains relatively superficial and subjective. It lacks theoretical support and objective measurement, making it even more difficult to answer the fundamental question of what constitutes a “good” data storytelling. Based on it, this paper constructs a theoretical evaluation model and a quantitative evaluation system to enrich the theoretical knowledge of data storytelling and provide diagnostic and improvement tools for practical activities. [Method/Process] Building upon narrative theory, this paper proposed an evaluation model based on three core dimensions: data, story and insights. Using mathematical formulas, it delineated three types and seven subtypes of evaluation models, providing theoretical support for the construction of the assessment system. According to the principles of quantifiability and operability, it introduced a nine-metric evaluation system, and validated its reliability and validity through empirical research. [Result/Conclusion] The constructed evaluation system is credible and effective. High-quality data stories should be characterized by data accuracy, inclusion of necessary details, standardization of data sources, and so on. The evaluation system and the work corresponding to the evaluation model types can be used for the diagnosis and improvement of the works.

参考文献

[1] 新华社. 中共中央关于坚持和完善中国特色社会主义制度推进国家治理体系和治理能力现代化若干重大问题的决定[EB/OL]. [2024-05-08]. http://www.gov.cn/zhengce/2019-11/05/content_5449023.htm. (Xinhua News Agency. CPC Central Committee's decision on some major issues concerning how to uphold and improve the system of socialism with Chinese characteristics and advance the modernization of China's system and capacity for governance[EB/OL]. [2024-05-08]. http://www. gov.cn/zhengce/2019-11/05/content_5449023.htm.)
[2] 中华人民共和国工业和信息化部. “十四五” 大数据产业发 展规 划[EB/OL]. [2024-05-08]. http://www.gov.cn/zhengce/zhengceku/2021-11/30/5655089/files/d1db3abb2dff4c859ee49850b63b07e2.pdf. (The Ministry of Industry and Information Technology of the People's Republic of China. The 14th FiveYear Plan for big data industry development[EB/OL]. [2024-05-08]. http://www.gov.cn/zhengce/zhengceku/2021-11/30/5655089/files/d1db3abb2dff4c859ee49850b63b07e2.pdf.)
[3] 中华 人民 共和 国国 务院. “ 十四五” 数字经济发展规划 [EB/OL]. [2024-05-08]. http://www.gov.cn/zhengce/zhengceku/2022-01/12/content_5667817.htm. (The State Council of the People's Republic of China. "Fourteenth Five-Year Plan" for the Development of Digital Economy [EB/OL]. [2024-05-08]. http://www.gov.cn/zhengce/zhengceku/2022-01/12/content_5667817.htm.)
[4] LIEM J, PERIN C, WOOD J. Structure and empathy in visual data storytelling: evaluating their influence on attitude[J]. Computer graphics forum, 2020, 39(3): 277-289.
[5] KOSARA R, MACKINLAY J. Storytelling: the next step for visualization[J]. Computer, 2013, 46(5): 44-50.
[6] ERREY N, LIANG J, LEONG T W, et al. Evaluating narrative visualization: a survey of practitioners[J]. International journal of data science and analytics, 2023, 3(1): 1-16.
[7] 孙智中, 朝乐门, 王锐. 数据故事化的评价与改进[J]. 情报资料工作, 2021, 42(2): 81-89. (SUN Z Z, CHAO L M, WANG R. Evaluation and improvement of data storytelling[J]. Information and documentation services, 2021, 42(2): 81-89.)
[8] SEGEL E, HEER J. Narrative visualization: telling stories with data[J]. IEEE transactions on visualization and computer graphics, 2010, 16(6): 1139-1148.
[9] KOSARA R. An argument structure for data stories[C]// Proceedings of the Eurographics/IEEE VGTC conference on visualization. Goslar: Eurographics Association, 2017: 31-35.
[10] 许向东. 转向、解构与重构: 数据新闻可视化叙事研究[J]. 国际 新界, 2019, 41(11): 142-155. (XU X D. Steering, deconstruction, and reconstruction: the research of data journalism visualization narrative[J]. Chinese journal of journalism & communication, 2019, 41(11): 142-155.)
[11] 孙艳平. 地图可视化叙事策略探析——以澎湃新闻“ 美数课 ” 为例[J]. 青年记者, 2022(1): 60-63. (SUN Y P. Analyzing narrative strategies of map visualization: a case study of "Data Visualization Class" [J]. Young journalists, 2022(1): 60-63.)
[12] 朝乐门. 数据故事的自动生成与工程化研发[J]. 情报资料工 作, 2021, 42(2): 53-62. (CHAO L M. Automatic generation and engineering research & development of data stories[J]. Information and documentation services, 2021, 42(2): 53-62.)
[13] KREUTER M W, GREEN M C, CAPPELLA J N, et al. Narrative communication in cancer prevention and control: a framework to guide research and application[J]. Annals of behavioral medicine, 2007, 33(3): 221-235.
[14] KAMP J. What’s your story?Designing a descriptive framework for brand stories on social media[D]. Enschede: University of Twente, 2015.
[15] HULLMAN J, DIAKOPOULOS N. Visualization rhetoric: framing effects in narrative visualization[J]. IEEE transactions on visualization and computer graphics, 2011, 17(12): 2231-2240.
[16] KNAFLIC C N. Storytelling with data: a data visualization guide for business professionals[M]. New York: John Wiley & Sons, 2015.
[17] LU J, CHEN W, YE H, et al. Automatic generation of unit visualization-based storytelling for impromptu data facts delivery[C]//2021 IEEE 14th Pacific visualization symposium (PacificVis). Coimbatore: IEEE, 2021: 21-30.
[18] CLAES S, VANDE M A. The impact of a narrative design strategy for information visualization on a public display[C]// Proceedings of the 2017 conference on designing interactive systems. New York: Association for Computing Machinery, 2017: 833-838.
[19] PRINCE G. A dictionary of narratology[M]. Lincoln: University of Nebraska Press, 2003.
[20] 查特曼. 故事与话语: 小说和电影的叙事结构[M]. 徐强, 译. 北京: 中国人民大学出版社, 2013. (CHATMAN S. Story and discourse: narrative structure in fiction and film[M]. XU Q, trans. Beijing: China Renmin University Press, 2013.)
[21] 李良荣. 新闻学概论[M]. 上海: 复旦大学出版社, 2001. (LI L R. Introduction to journalism [M]. Shanghai: Fudan University Press, 2001.)
[22] HINRICHS H. Data quality management in data warehouse systems. dissertation[D]. Oldenburg: Oldenburg University, 2002.
[23] PIPINO L L, LEE Y W, WANG R Y. Data quality assessment[J]. Communications of the ACM, 2002, 45(4): 211-218.
[24] 肖赛君, 郑雨雯. 数据新闻基础教程[M]. 武汉: 武汉大学出版社, 2021. (XIAO S J, ZHENG Y W. Fundamentals of data journalism [M]. Wuhan: Wuhan University Press, 2021.)
[25] PULIDO C M, VILLAREJO-CARBALLIDO B, REDONDOSAMA G, et al. COVID-19 infodemic: more retweets for sciencebased information on coronavirus than for false information[J]. International sociology, 2020, 35(4): 377-392.
[26] RAPP D N, SALOVICH N A. Can’t we just disregard fake news? The consequences of exposure to inaccurate information[J]. Policy insights from the behavioral and brain sciences, 2018, 5(2): 232-239.
[27] ZHANG Y, KORU G. Understanding and detecting defects in healthcare administration data: toward higher data quality to better support healthcare operations and decisions[J]. Journal of the American Medical Informatics Association, 2020, 27(3): 386-395.
[28] AZEROUAL O, SAAKE G, WASTL J. Data measurement in research information systems: metrics for the evaluation of data quality[J]. Scientometrics, 2018, 115(3): 1271-1290.
[29] WOLFF A, MULHOLLAND P, COLLINS T. Storyscope: using theme and setting to guide story enrichment from external data sources[C]//Proceedings of the 24th ACM conference on hypertext and social media. Paris: Association for Computing Machinery, 2013: 79-88.
[30] SMITH R, SNOW P, SERRY T, et al. The role of background knowledge in reading comprehension: a critical review[J]. Reading psychology, 2021, 42(3): 214-240.
[31] KAUFFMAN S. Story elements: which impact children's reading interests? [D]. Bowling Green: Bowling Green State University, 2005.
[32] THORNDYKE P W. Cognitive structures in comprehension and memory of narrative discourse[J]. Cognitive psychology, 1977, 9(1): 77-110.
[33] GLENN C G. The role of episodic structure and of story length in children's recall of simple stories[J]. Journal of verbal learning and verbal behavior, 1978, 17(2): 229-247.
[34] HULLMAN J, DRUCKER S, RICHE N H, et al. A deeper understanding of sequence in narrative visualization[J]. IEEE transactions on visualization and computer graphics, 2013, 19(12): 2406-2415.
[35] FREYTAG G. Technique of the drama: an exposition of dramatic composition and art[M]. Chicago: S C Griggs, 1894.
[36] MÜHLBACHER M. Plotting memory. What are we made to remember when we read narrative texts?[J]. Journal of literary theory, 2022, 16(2): 239-263.
[37] ROTH C, VORDERER P, KLIMMT C, et al. How does an interactive story feel like? Theory and measurement of the user experience[C]//International conference on entertainment computing. Berlin: Springer, 2011: 464-467.
[38] 葛丽莎. 全媒体环境下的受众新闻信息行为研究[M]. 上海: 上海交通大学出版社, 2019. (GE L S. Research on audience news information behavior in the all-media environment[M]. Shanghai: Shanghai Jiao Tong University Press, 2019.)
[39] ROSE D. Defining story details[M]. Berkeley: Apress, 2016.
[40] COHEN Y. Diffusion theories: news diffusion[J]. The international encyclopedia of media effects, 2017, 3(29): 1-1.
[41] 郑保卫. 新闻理论新编[M]. 北京: 中国人民大学出版社, 2007: 82-83. (ZHENG B W. Journalism theory [M]. Beijing: China Renmin University Press, 2007: 82-83.)
[42] 李雁群, 何云琪, 钱龙华, 等. 中文嵌套命名实体识别语料库的构建[J]. 中文信息学报, 2018, 32(8): 19-26. (LI Y Q, HE Y Q, QIAN L H, et al. Chinese nested named entity recognition corpus construction[J]. Journal of Chinese information processing, 2018, 32(8): 19-26.)
[43] 周明月, 龚晨, 李正华, 等. 数据标注方法比较研究: 以依存句法树标注为例[J]. 清华大学学报(自然科学版), 2022, 62(5): 908-916. (ZHOU M Y, GONG C, LI Z H, et al. Comparison of data annotation approaches using dependency tree annotation as a case study[J]. Journal of Tsinghua University (Science and Technology), 2022, 62(5): 908-916.)
[44] 夏邦世, 吴金华. Kappa一致性检验在检验医学研究中的应用 [J]. 中华检验医学杂志, 2006(1): 83-84. (XIA B S, WU J H. Application of Kappa consistency test in laboratory medicine research [J]. Chinese journal of laboratory medicine, 2006(1): 83-84.)
[45] WONGPAKARAN N, WONGPAKARAN T, WEDDING D, et al. A comparison of Cohen’s Kappa and Gwet's AC1 when calculating inter-rater reliability coefficients: a study conducted with personality disorder samples[J]. BMC medical research methodology, 2013, 13(1): 1-7.
[46] 安葳鹏, 程小博, 刘雨. Fleiss' Kappa系数在贝叶斯决策树算法中的应用[J]. 计算机工程与应用, 2020, 56(7): 137-140. (AN W P, CHENG X B, LIU Y. Application of Fleiss’ Kappa Coefficient in Bayesian decision tree algorithm[J]. Computer engineering and applications, 2020, 56(7): 137-140.)
[47] 刘乾玉, 唐家银. 基于Kendall协同系数的产品加速试验失效机理一致性统计检验[J]. 湖北大学学报(自然科学版), 2021, 43(6): 671-677. (LIU Q Y, TANG J Y. Statistical test of failure mechanism consistency of product in accelerated test based on Kendall synergy coefficient[J]. Journal of Hubei University (Natural Science), 2021, 43(6): 671-677.)
[48] BENCHOUF M, MATZNER-LOBER E, MOLINARI N, et al. Interobserver Agreement issues in radiology[J]. Diagnostic and interventional imaging, 2020, 101(10): 639-641.
[49] 乔舰. 组内相关系数的理论基础及建模应用[J]. 统计与信息论坛, 2016, 31(11): 44-48. (QIAO J. The estimation of technical efficiency based on double-lag stochastic frontier model[J]. Journal of statistics and information, 2016, 31(11): 44-48.)
[50] 王维, 陈青山, 刘治民. 应用Excel完成组内相关系数ICC的计算和评价[J]. 中国卫生统计, 2008(3): 314-315. (WANG W, CHEN Q S, LIU Z M. Application of excel in calculating and evaluating intraclass correlation coefficient (ICC) in intra-group correlation [J]. Chinese journal of health statistics, 2008(3): 314-315.)
文章导航

/