[1] World Development Indicators. Scientific and technical journal articles[EB/OL]. [2024-04-07]. https://databank.worldbank.org/source/world-development-indicators/Series/IP.JRN.ARTC.SC.
[2] 耿立校, 晋高杰, 李亚函, 等. 基于改进内容过滤算法的高校图书馆文献资源个性化推荐研究[J]. 图书情报工作, 2018, 62(21): 112-117. (GENG L X, JIN G J, LI Y H, et al. Research on personalized recommendation of university library literature resources based on improved content-based filtering algorithm[J]. Library and information service, 2018, 62(21): 112-117.)
[3] 马慧芳, 胡东林, 刘宇航, 等. 融合作者与文献影响力的科技论文推荐方法[J]. 西北师范大学学报(自然科学版), 2021, 57(2): 55-62. (MA H F, HU D L, LIU Y H, et al. Ecommendation method for scientific papers integrating influence of author and literature[J]. Journal of Northwest Normal University (natural science), 2021, 57(2): 55-62.)
[4] 熊回香, 唐明月, 叶佳鑫, 等. 融合加权异质网络与网络表示学习的学术信息推荐研究[J]. 现代情报, 2023, 43(5): 23-34. (XIONG H X, TANG M Y, YE J X, et al. Research on academic information recommendation combining weighted heterogeneous network and network representation learning[J]. Journal of modern information, 2023, 43(5): 23-34.)
[5] 杨艳, 李建中. 数字图书馆中基于文献拓扑的个性化推荐技术 [J]. 计算机研究与发展, 2004, 41: 484-489. (YANG Y, LI J Z. Topology-based paper recommendation in digital library[J]. Journal of computer research and development, 2004, 41: 484-489.)
[6] 席俊红. 基于案例推理的科技文献推荐系统研究[D]. 上海: 华东师范大学, 2005. (XI J H. Study on recommendation system of technological literatures using case-based rensoning[D]. Shanghai: East China Normal University, 2005.)
[7] 曾子明, 金鹏. 基于用户兴趣变化的数字图书馆知识推荐服务研究[J]. 图书馆论坛, 2016, 36(1): 94-99. (ZENG Z M, JIN P. Research on knowledge recommendation service of digital library based on users’ Interest drift[J]. Library tribune, 2016, 36(1): 94-99.)
[8] 熊回香, 杨雪萍, 高连花. 基于用户兴趣主题模型的个性化推荐研究[J]. 情报学报, 2017, 36(9): 916-929. (XIONG H X, YANG X P, GAO L H. Personalized recommendation research based on user interest topic model[J]. Journal of the China Society for Scientific and Technical Information, 2017, 36(9): 916-929.)
[9] 李宇佳, 王益成. 基于用户动态画像的学术新媒体信息精准推荐模型研究[J]. 情报科学, 2022, 40(1): 88-93, 101. (LI Y J, WANG Y C. Accurate recommendation model of academic new media information based on user dynamic profile[J]. Information science, 2022, 40(1): 88-93, 101.)
[10] KWAPONG B A, ANARFI R, FLETCHER K K. Personalized service recommendation based on user dynamic preferences[C]// Services computing–scc 2019. Berlin: Springer, 2019: 77-91.
[11] 孙雨生, 祝博. 基于知识图谱的信息推荐架构体系研究[J]. 情报理论与实践, 2021, 44(11): 116-123. (SUN Y S, ZHU B. Research on information recommendation architecture system based on knowledge graph[J]. Information studies: theory & application, 2021, 44(11): 116-123.)
[12] 李锴君, 牛振东, 时恺泽, 等. 基于学术知识图谱及主题特征嵌入的论文推荐方法[J]. 数据分析与知识发现, 2023, 7(5): 48-59. (LI K J, NIU Z D, SHI K Z, et al. Paper recommendation based on academic knowledge graph and subject feature embedding[J]. Data analysis and knowledge discovery, 2023, 7(5): 48-59.)
[13] ZHU Y, LIN Q, LU H, et al. Recommending scientific paper via heterogeneous knowledge embedding based attentive recurrent neural networks[J]. Knowledge-based systems, 2021, 215: 106744.
[14] 李贺, 刘嘉宇, 沈旺, 等. 基于模糊认知图的在线健康社区知识推荐研究[J]. 数据分析与知识发现, 2020, 4(12): 55-67. (LI H, LIU J Y, SHEN W, et al. Recommending knowledge for online health community users based on fuzzy cognitive map[J]. Data analysis and knowledge discovery, 2020, 4(12): 55-67.)
[15] ZHANG J, GU F, JI Y, et al. Personalized scientific and technological literature resources recommendation based on deep learning[J]. Journal of intelligent & fuzzy systems, 2021, 41(2): 2981-2996.
[16] 杨怀珍, 张静, 李雷. 融合类别偏好与项目时效因素的混合推荐[J]. 数据分析与知识发现, 2023, 7(7): 136-145. (YANG H Z, ZHANG J, LI L. Hybrid recommendation with category preferences and item timeliness factor[J]. Data analysis and knowledge discovery, 2023, 7(7): 136-145.)
[17] ZHANG Y, YANG Q. A survey on multi-task learning[J]. IEEE transactions on knowledge and data engineering, 2022, 34(12): 5586-5609
[18] CHEN S, ZHANG Y, YANG Q. Multi-task learning in natural language processing: an overview[EB/OL]. [2024-04-07]. https://arxiv.org/abs/2109.09138.
[19] DENG Y, ZHANG W, XU W, et al. A unified multi-task learning framework for multi-goal conversational recommender systems[J]. ACM transactions on information systems, 2023(3): 41.
[20] MISRA I, SHRIVASTAVA A, GUPTA A, et al. Cross-stitch networks for multi-task learning[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. Las Vegas: IEEE, 2016: 3994-4003.
[21] MA J, ZHAO Z, YI X, et al. Modeling task relationships in multitask learning with multi-gate mixture-of-experts[C]//Proceedings of the 24th ACM sigkdd international conference on knowledge discovery & data mining. New York: Association for Computing Machinery, 2018: 1930-1939.
[22] LIU J, LI X, AN B, et al. Multi-faceted hierarchical multi-task learning for recommender systems[C]//Proceedings of the 31st ACM international conference on information & knowledge management. New York: Association for Computing Machinery, 2022: 3332-3341.
[23] XU Z, ZHAO M, LIU L, et al. Mixture of virtual-kernel experts for multi-objective user profile modeling[C]//Proceedings of the 28th ACM sigkdd conference on knowledge discovery and data mining. New York: Association for Computing Machinery, 2022: 4257-4267.
[24] LIU H Y, OTT M, GOYAL N, et al. RoBERTa: a robustly optimized Bert pretraining approach[EB/OL]. [2024-04-07]. https://arxiv.org/abs/1907.11692.
[25] KUMAR V, KHATTAR D, GUPTA S, et al. Deep neural architecture for news recommendation[C]//Conference and Labs of the Evaluation Forum. New York: Association for Computing Machinery, 2017: 85-104.
[26] ZHAO J J, DU B, SUN L L, et al. Deep multi-task learning with relational attention for business success prediction[J]. Pattern recognition, 2021, 2021(110): 50-64.
[27] 曾子明, 张瑜. 基于数据增强和多任务学习的突发公共卫生事件谣言识别研究[J]. 数据分析与知识发现, 2023, 7(11): 56-57. (ZENG Z M, ZHANG Y. Rumor detection of public health emergencies based on data augmentation and multi-task learning[J]. Data analysis and knowledge discovery, 2023, 7(11): 56-67.)
[28] WANG H, CHEN B, LI W J. Collaborative topic regression with social regularization for tag recommendation[C]//Twentythird international joint conference on artificial intelligence. New York: Association for Computing Machinery, 2013: 2719-2725.
[29] 新智元. 吴恩达的二八定律[EB/OL]. [2023-04-13]. https:// www.51cto.com/article/657024.html. (XIN Z Y. Andrew Ng’s the 80/20 Rule[EB/OL]. [2023-04-13]. https://www.51cto.com/article/657024.html.)
[30] SARWAR B, KARYPIS G, KONSTAN J, et al. Item-based collaborative filtering recommendation algorithms[C]// Proceedings of the 10th international conference on World Wide Web. New York: Association for Computing Machinery, 2001: 285-295.
[31] 孙金杨, 刘柏嵩, 任豪, 等. TAGAN:一种融合细粒度语义特征的学术论文对抗推荐算法[J]. 电信科学, 2021, 37(8): 57-65. (SUN J Y, LIU B S, REN H, et al. TAGAN: an academic paper adversarial recommendation algorithm incorporating finegrained semantic features[J]. Telecommunications science, 2021, 37(8): 57-65.)