[1] 量子位智库.中国AIGC产业全景报告[EB/OL].[2024-05-11]. https://new.qq.com/rain/a/20230410A01QZP00. (QbitAI Insights. Panoramic report of AIGC industry in China[EB/OL].[2024-05-11]. https://new.qq.com/rain/a/20230410A01QZP00.)
[2] 俞鼎,李正风.生成式人工智能社会实验的伦理问题及治理[J].科学学研究, 2024, 42(1):3-9.(YU D, LI Z F. Ethical issues and governance in generative artificial intelligence social experiment[J]. Studies in science of science, 2024, 42(1):3-9.)
[3] DALALAH D, DALALAH O M A. The false positives and false negatives of generative AI detection tools in education and academic research:the case of ChatGPT[J]. The international journal of management education, 2023, 21(2):100822.
[4] 刘亚丽,范逢春. ChatGPT-AIGC用户风险感知维度识别与治理研究--基于扎根理论的探索性分析[J].情报理论与实践, 2024, 47(3):121-129.(LIU Y L, FAN Y C. ChatGPT-AIGC users risk perception dimension identification and management research:an exploratory analysis based on grounded theory[J]. Information studies:theory&application, 2024, 47(3):121-129.)
[5] 中国信息通信研究院,京东探索研究院.人工智能生成内容(AIGC)白皮书[R/OL].[2024-05-11]. http://www.caict.ac.cn/english/research/whitepapers/202211/P020221111501862950279.pdf. (China Academy of Information and Communications Technology, JD Explore Academy. Artificial Intelligence Generated Content (AIGC) White Paper[R/OL].[2024-05-11]. http://www.caict.ac.cn/english/research/whitepapers/202211/P020221111501862950279.pdf.)
[6] STAHL B C, EKE D. The ethics of ChatGPT-Exploring the ethical issues of an emerging technology[J]. International journal of information management, 2024, 74:102700.
[7] 莫祖英,盘大清,刘欢,等.信息质量视角下AIGC虚假信息问题及根源分析[J].图书情报知识, 2023, 40(4):32-40.(MO Z Y, PAN D Q, LIU H, et al. Analysis on AIGC false information problem and root cause from the perspective of information quality[J]. Documentation, information&knowledge, 2023, 40(4):32-40.)
[8] 刘江峰,刘雏菲,齐月,等. AIGC助力数字人文研究的实践探索:SikuGPT驱动的古诗词生成研究[J].情报理论与实践, 2023, 46(5):23-31.(LIU J F, LIU C F, QI Y, et al. A practical exploration of AIGC-Powered digital humanities research:a SikuGPT driven research of ancient poetry generation[J]. Information studies:theory&application, 2023, 46(5):23-31.)
[9] 储节旺,罗怡帆,李佳轩. AIGC对信息生成方式及用户信息行为的影响[J].图书情报工作, 2023, 67(24):13-23.(CHU J W, LUO Y F, LI J X. The influence of AIGC on information generation mode and user information behavior[J]. Library and information service, 2023, 67(24):13-23.)
[10] DUONG C D, VU T N, NGO T V N. Applying a modified technology acceptance model to explain higher education students'usage of ChatGPT:a serial multiple mediation model with knowledge sharing as a moderator[J]. The international journal of management education, 2023, 21(3):100883.
[11] 卢新元,张进澳,雷晓鹏.人工智能生成内容环境下用户信息行为研究--以对话式搜索引擎为例[J].情报理论与实践, 2023, 46(12):84-92.(LU X Y, ZHANG J A, LIE X P. Research on user's information behavior in artificial intelligence generated content environment:take a conversational search engine as an example[J]. Information studies:theory&application, 2023, 46(12):84-92.)
[12] 毛太田,汤淦,马家伟,等.人工智能生成内容(AIGC)用户采纳意愿影响因素识别研究--以ChatGPT为例[J/OL].情报科学:1-15[2024-05-11]. http://kns.cnki.net/kcms/detail/22.1264.G2.20231103.1005.010.html. (MAO T T, TANG G, MA J W, et al. Factors influencing user adoption intention of artificial intelligence generated content (AIGC):a study on ChatGPT[J/OL]. Information science:1-15[2024-05-11]. http://kns.cnki.net/kcms/detail/22.1264.G2.20231103.1005.010.html.)
[13] 张莉曼,张向先,吴雅威,等.基于语义主题图谱的学术APP用户信息需求发现研究[J].情报理论与实践, 2021, 44(12):133-140.(ZHANG L W, ZHANG X X, WU Y W, et al. Research on information requirement discovery of academic APP users based on semantic topic map[J]. Information studies:theory&application, 2021, 44(12):133-140.)
[14] 夏苏迪,邓胜利,汪璠.在线医疗社区健康科普知识供需匹配研究[J].现代情报, 2023, 43(7):38-47.(XIA S D, DENG S L, WANG F. Research on supply optimization of health science knowledge in online medical community based on user need[J]. Journal of modern information, 2023, 43(7):38-47.)
[15] EUNHYE P, JINAH P, MINGMING H. Tourism demand forecasting with online news data mining[J]. Annals of tourism research, 2021, 90:103273.
[16] 单晓红,孔维嘉,王蕊.社交媒体数据驱动的老年人智能化需求研究[J].情报理论与实践, 2022, 45(8):23-30.(SHAN X H, KONG W J, WANG R. Research on the intelligent needs of the elderly driven by social media data[J]. Information studies:theory&application, 2022, 45(8):23-30.)
[17] JIE W, NARISA Z. What consumer complaints should hoteliers prioritize?Analysis of online reviews under different market segments[J]. Journal of hospitality marketing management, 2023, 32(1):1-28.
[18] 王文娜,许正良,李贺,等.共享住宿平台用户关注主题挖掘研究--典型城市差异分析的视角[J].图书情报工作, 2023, 67(9):121-131.(WANG W N, XU Z L, LI H, et al. Research on users'focus topic mining of shared accommodation platform:from the perspective of difference analysis of typical cities[J]. Library and information service, 2023, 67(9):121-131.)
[19] GROOTENDORST M. BERTopic:neural topic modeling with a class-based TF-IDF procedure[J]. ArXiv preprint arXiv:2203. 05794, 2022.
[20] CONTRERAS K, VERBEL G, SANCHEZ J, et al. Using topic modelling for analyzing panamanian parliamentary proceedings with neural and statistical methods[C]//2022 IEEE 40th Central America and Panama Convention (CONCAPAN). Panama:IEEE, 2022:1-6.
[21] 刘洋,柳卓心,金昊,等.基于BERTopic模型的用户层次化需求及动机分析--以抖音平台为例[J].情报杂志, 2023, 42(12):159-167.(LIU Y, LIU Z X, JIN H, et al. User hierarchical need and motivation analysis based on BERTopic model:taking Douyin platform as an example[J]. Journal of intelligence, 2023, 42(12):159-167.)
[22] 王浩伟,汪璠,王秉琰.主题视角下生成式人工智能生成内容与用户生成内容的比较[J].情报理论与实践, 2023, 46(10):200-207, 199.(WANG H W, WANG F, WANG B Y. A comparison of generative Al-generated content and usergenerated content in the thematic perspective[J]. Information studies:theory&application, 2023, 46(10):200-207, 199.)
[23] WANG Z, CHEN J, CHEN J, et al. Identifying interdisciplinary topics and their evolution based on BERTopic[J]. Scientometrics, 2023:1-26.
[24] 高春玲,姜莉媛,董天宇.基于BERTopic模型的老年人健康信息需求主题演化研究--以新浪微博平台为例[J/OL].情报科学:1-16[2024-03-25]. http://kns.cnki.net/kcms/detail/22.1264.G2.20240128.1743.004.html. (GAO C L, JIANG L Y, DONG T Y. Thematic evolution of health information needs in the elderly based on BERTopic model[J/OL]. Information science:1-16[2024-03-21]. http://kns.cnki.net/kcms/detail/22.1264.G2.20240128.1743.004.html.)
[25] MARTILLA J A, JAMES J C. Importance-performance analysis[J]. Journal of marketing, 1977, 41(1):77-79.
[26] 孙玲玲,胡彦蓉,刘洪久.基于LSTM-LDA算法和IPA分析的在线品牌社群用户关注热点研究[J].情报杂志, 2021, 40(9):178-186.(SUN L L, HU Y R, LIU H J. LSTM and LDA fusion algorithm analysis of online brand community for users'focus hot spots[J]. Journal of intelligence, 2021, 40(9):178-186.)
[27] PRATT S, SUNTIKUL W, AGYEIWAAH E. Determining the attributes of gastronomic tourism experience:applying impact‐ range performance and asymmetry analyses[J]. International journal of tourism research, 2020, 22(5):564-581.
[28] 吴江,李秋贝,胡忠义,等.基于IPA模型的乡村旅游景区游客满意度分析[J].数据分析与知识发现, 2023, 7(7):89-99.(WU J, LI Q B, HU Z Y, et al. Analyzing tourist satisfaction of rural scenic attractions based on IPA model[J]. Data analysis and knowledge discovery, 2023, 7(7):89-99.)
[29] 蒋翠清,吕孝忠,段锐.基于主题模型的产品在线论坛主题演化分析[J].系统工程学报, 2019, 34(5):598-609.(JIANG C Q, LV X Z, DUAN R. Analyzing topic evolution of online product forum based on topic model[J]. Journal of systems engineering, 2019, 34(5):598-609.)
[30] 熊曙初,李轩,吴佳妮,等.基于有监督对比学习的文本情感语义优化方法研究[J/OL].数据分析与知识发现:1-18[2024-05-11]. http://kns.cnki.net/kcms/detail/10.1478.G2.20231116.0936.002.html. (XIONG S C, LI X, WU J N, et al. Research of text affective semantic optimization method based on supervised contrastive learning[J/OL]. Data analysis and knowledge discovery:1-18[2024-05-11]. http://kns.cnki.net/kcms/detail/10.1478.G2.20231116.0936.002.html.)
[31] JAIN P K, PAMULA R, SRIVASTAVA G. A systematic literature review on machine learning applications for consumer sentiment analysis using online reviews[J]. Computer science review, 2021, 41:100413.
[32] 马晓悦,孙铭菲.融合热点事件主题演化的民族文化扩散研究[J].图书情报工作, 2022, 66(3):106-117.(MA X Y, SUN M F. Research on the diffusion of natural culture integrating the theme evolution of hot topics[J]. Library and information service, 2022, 66(3):106-117.)