专题:突破性/颠覆性技术识别

基于融合新闻影响力和图注意力网络聚类方法的颠覆性技术识别

  • 王良 ,
  • 李牧南
展开
  • 华南理工大学工商管理学院 广州 510640
王良,博士研究生;李牧南,教授,博士生导师,通信作者,E-mail:limn@scut.edu.cn。

收稿日期: 2024-02-22

  修回日期: 2024-06-12

  网络出版日期: 2024-07-30

基金资助

本文系国家社会科学基金重点项目“加快我国科技自立自强发展战略问题研究”(项目编号:22AZD035)研究成果之一。

Disruptive Technology Identification Based on News Influence and Enhanced Graph Attention Network Clustering Method

  • Wang Liang ,
  • Li Munan
Expand
  • School of Business Administration, South China University of Technology, Guangzhou 501641

Received date: 2024-02-22

  Revised date: 2024-06-12

  Online published: 2024-07-30

Supported by

This work is supported by the key project of the National Social Science Fund of China titled “Research on Accelerating the Development Strategy of Self-reliance and Self-improvement in Science and Technology in China” (Grant No. 22AZD035).

摘要

[目的/意义] 许多现有研究依赖于专利数据来识别颠覆性技术,但这些方法在专利文本的主题聚类分析方面仍有进一步优化的潜力。[方法/过程] 通过构建基于新闻影响力增强的图注意力网络,以及自适应分配注意力权重,有效捕捉和充分利用技术主题词共现网络节点关系,在生成有代表性的节点向量后再进行专利文本主题聚类分析,可以进一步辅助识别潜在的颠覆性技术。[结果/结论] 为进一步验证方法的有效性,选择智慧城市和工业互联网两个新兴技术领域进行实证检验。理论和实证分析显示,这种融合新闻影响力的图注意力网络聚类方法可以进一步丰富当前有关颠覆性技术识别的方法体系。

本文引用格式

王良 , 李牧南 . 基于融合新闻影响力和图注意力网络聚类方法的颠覆性技术识别[J]. 图书情报工作, 2024 , 68(15) : 27 -43 . DOI: 10.13266/j.issn.0252-3116.2024.15.003

Abstract

[Purpose/Significance] Many existing studies rely on patent data to identify disruptive technologies, but these methods still have potential for further optimization in terms of topic clustering analysis of patent texts. [Method/Process] By constructing a graph attention network based on the enhancement of news influence and adaptive allocation of attention weights, the node relationship of the co-occurrence network of technical subject words was effectively captured and fully utilized. After generating representative node vectors, it conducted thematic clustering analysis of patent text, which could further assist in identifying potential disruptive technologies. [Result/Conclusion] In order to further verify the effectiveness of the method, it selects two emerging technology fields of smart city and industrial Internet for empirical testing. The theoretical and empirical analysis shows that this clustering method of graph attention network, which integrates the influence of news, can further enrich the current methodological system on the identification of disruptive technologies.

参考文献

[1] CHRISTENSEN C M. The innovator’s dilemma: when new technologies cause great firm to fail[M]. Cambridge: Harvard Business Review Press, 1997.
[2] 王康, 陈悦, 宋超, 等. 颠覆性技术:概念辨析与特征分析[J]. 科学学研究, 2022, 40(11): 1937-1946. (WANG K, CHEN Y, SONG C, et al. Disruptive technology: concept discrimination and characteristics analysis[J]. Studies in science of science, 2022, 40(11): 1937-1946.)
[3] 张金柱, 王秋月, 仇蒙蒙. 颠覆性技术识别研究进展综述[J]. 数据分析与知识发现, 2022, 6(7): 12-31. (ZHANG J Z, WANG Q Y, QIU M M. Review of studies identifying disruptive technologies[J]. Data analysis and knowledge discovery, 2022, 6(7): 12-31.)
[4] 刘小慧, 沈哲思, 廖宇, 等. 科研论文颠覆性指数的改进及其影响因素研究[J]. 图书情报工作, 2020, 64(24): 84-91. (LIU X H, SHEN Z S, LIAO Y, et al. The research about the improved disruption index and its influencing factors[J]. Library and information service, 2020, 64(24): 84-91.)
[5] 张硕, 汪雪锋, 乔亚丽, 等. 从技术预测研究现状、趋势及未来思考:数据分析视角[J]. 图书情报工作, 2022, 66(10): 4-18. (ZHANG S, WANG X F, QIAO Y L, et al. Research status, trends and future thinking of technology forecasting: from the perspective of data analytics[J]. Library and information service, 2022, 66(10): 4-18.)
[6] 乔亚丽, 黄颖, 张硕, 等. 多维视角下颠覆性技术识别:研究进展与未来思考[J]. 情报杂志, 2022, 41(8): 45-52. (QIAO Y L, HUANG Y, ZHANG S, et al. The identification of disruptive technology from a multi-dimensional perspective: research progress and future prospects[J]. Journal of intelligence, 2022, 41(8): 45-52.)
[7] CHRISTENSEN C M, RAYNOR M, MCDONALD R. What is disruptive innovation?[J]. Harvard business review, 2015, 93(12): 44-53.
[8] DANNEELS E. Disruptive technology reconsidered: a critique and research agenda[J]. Journal of product innovation management, 2004, 21(4): 246-258.
[9] SCHMIDT G M, DRUEHL C T. When is a disruptive innovation disruptive?[J]. Journal of product innovation management, 2008, 25(4): 347-369.
[10] 黄鲁成, 成雨, 吴菲菲, 等. 关于颠覆性技术识别框架的探索[J]. 科学学研究, 2015, 33(5): 654-664. (HUANG L C, CHENG Y, WU F F, et al. Study on identification framework of disruptive technology[J]. Studies in science of science, 2015, 33(5): 654-664.)
[11] 于光辉, 宁钟, 李昊夫. 基于专利和Bass模型的颠覆性技术识别方法研究[J]. 科学学研究, 2021, 39(8): 1467-1473, 1536. (YU G H, NING Z, LI H F. Research on identification method of disruptive technology based on patent and Bass Model[J]. Studies in science of science, 2021, 39(8): 1467-1473, 1536.)
[12] CHENG Y, HUANG L C, RAMLOGAN R, et al. Forecasting of potential impacts of disruptive technology in promising technological areas: elaborating the SIRS epidemic model in RFID technology[J]. Technological forecasting and social change, 2017, 117: 170-183.
[13] JIA W F, XIE Y P, ZHAO Y N, et al. Research on disruptive technology recognition of China’s electronic information and communication industry based on patent influence[J]. Journal of global information management, 2021, 29(2): 148-165.
[14] 侯广辉, 廖桂铭, 王刚. 基于突变级数的颠覆性技术识别模型构建及实证研究[J]. 情报杂志, 2021, 40(10): 7-14. (HOU G H, LIAO G M, WANG G. Construction and empirical study of disruptive technology identification model based on mutation series model[J]. Journal of intelligence, 2021, 40(10): 7-14.)
[15] 李乾瑞, 郭俊芳, 黄颖, 等. 基于突变—融合视角的颠覆性技术主题演化研究[J]. 科学学研究, 2021, 39(12): 2129-2139. (LI Q R, GUO J F, HUANG Y, et al. Topic evolution research of disruptive technology based on mutation and fusion perspective[J]. Studies in science of science, 2021, 39(12): 2129-2139.)
[16] 王康, 陈悦. 技术融合视角下基于专利的颠覆性技术识别研究[J]. 情报杂志, 2022, 41(4): 29-36, 134. (WANG K, CHEN Y. Research on disruptive technology identification based on patent from the perspective of technology convergence[J]. Journal of intelligence, 2022, 41(4): 29-36, 134.
[17] 王康, 陈悦, 王玉奇, 等. 基于专利引用变化的颠覆性技术识别研究[J]. 情报杂志, 2022, 41(1): 74-80, 169. (WANG K, CHEN Y, WANG Y Q, et al. Research on disruptive technology identification based on patent citation changes[J]. Journal of intelligence, 2022, 41(1): 74-80, 169.)
[18] 吴可凡, 王伟, 张世玉, 等. 技术不连续性视角下颠覆性技术识别方法研究[J]. 情报理论与实践, 2022, 45(10): 125-131. (WU K F, WANG W, ZHANG S Y, et al. Research on disruptive technology identification methods from the perspective of technology discontinuities[J]. Information studies: theory & application, 2022, 45(10): 125-131.)
[19] 单晓红, 韩晟熙, 刘晓燕. 基于技术主题演化的颠覆性技术识别研究[J]. 情报理论与实践, 2023, 46(8): 113-123. (SHAN X H, HAN S X, LIAO X Y. Research on disruptive technology identification based on the evolution of technology themes[J]. Information studies: theory & application, 2023, 46(8): 113-123.)
[20] 许佳琪, 汪雪锋, 雷鸣, 等. 从突破性创新到颠覆性创新:内涵、特征与演化[J]. 科研管理, 2023, 44(2): 1-13. (XU J Q, WANG X F, LEI M, et al. From breakthrough innovation to disruptive innovation: their connotations, characteristics and evolution[J]. Science research management, 2023, 44(2): 1-13.)
[21] SAINIO L M, PUUMALAINEN K. Evaluating technology disruptiveness in a strategic corporate context: a case study[J]. Technological forecasting and social change, 2007, 74(8): 1315-1333.
[22] 邓建军, 刘安蓉, 曹晓阳, 等. 颠覆性技术早期识别方法框架研究――基于科学端的视角[J]. 中国科学院院刊, 2022, 37(5): 674-684. (DENG J J, LIU A R, CAO X Y, et al. Methodological framework of identifying disruptive technologies on emerging stage: based on science[J]. Bulletin of Chinese academy of sciences, 2022, 37(5): 674-684.)
[23] 庞弘燊, 钟秀梅. 颠覆性技术产生过程的多源数据多特征项可视化研究[J]. 图书情报工作, 2022, 66(19): 122-131. (PANG H S, ZHONG X M. A visualization study for understanding disruptive technology evolution based on multi-feature co-occurrence network analysis of multi-source literature[J]. Library and information service, 2022, 66(19): 122-131.)
[24] 吕璐成, 赵萍, 姜山, 等. 基于候选技术辅助生成和多源数据评估的颠覆性技术识别方法研究[J]. 情报理论与实践, 2023, 46(6): 136-144. (LV L C, ZHAO P, JIANG S, et al. Research on disruptive technology identification method based on candidate technology aided generation and multi-source data evaluation[J]. Information studies: theory & application, 2023, 46(6): 136-144.)
[25] 谭晓, 西桂权, 苏娜, 等. 科学—技术—项目联动视角下颠覆性技术识别研究[J]. 情报杂志, 2023, 42(2): 82-91. (TAN X, XI G Q, SU N, et al. Disruptive technology identification: from the perspective of science and technology project linkage[J]. Journal of intelligence, 2023, 42(2): 82-91.)
[26] KELLER A, HUSIG S. Ex ante identification of disruptive innovations in the software industry applied to web applications: the case of Microsoft’s vs. Google’s office applications[J]. Technological forecasting and social change, 2009, 76(8): 1044-1054.
[27] 李乾瑞, 郭俊芳, 黄颖, 等. 基于专利计量的颠覆性技术识别方法研究[J]. 科学学研究, 2021, 39(7): 1166-1175. (LI Q R, GUO J F, HUANG Y, et al. Research on the method of disruptive technology identification based on patent bibliometrics[J]. Studies in science of science, 2021, 39(7): 1166-1175.)
[28] 刘志辉, 张均胜, 林毅, 等. 基于隐性知识的潜在颠覆性技术评估方法研究[J]. 情报学报, 2021, 40(12): 1271-1278. (LIU Z H, ZHANG J S, LIN Y, et al. Potential disruptive technology assessment method based on implicit knowledge[J]. Journal of the China Society for Scientific and Technical Information, 2021, 40(12): 1271-1278.)
[29] 陈育新, 李健, 韩毅. 核心—边缘理论视角下的颠覆性技术识别研究[J]. 情报理论与实践, 2022, 45(8): 121-129. (CHEN Y X, LI J, HAN Y. Research on a method to identify disruptive technologies in the view of core-periphery theory[J]. Information studies: theory & application, 2022, 45(8): 121-129.)
[30] 马永红, 孔令凯, 林超然, 等. 基于异构数据的颠覆性技术识别研究——以智能制造装备领域为例[J]. 现代情报, 2022, 42(07): 92-104. (MA Y H, KONG L K, LIN C R, et al. Research on the identification of disruptive technologies based on heterogeneous data: an example in the field of intelligent manufacturing equipment[J]. Journal of modern information, 2022, 42(7): 92-104.)
[31] 赵玉桐, 杨建林. 基于跨领域专利的颠覆性技术识别研究——以人工智能领域为例[J]. 情报理论与实践, 2023, 46(3): 174-182. (ZHAO Y T, YANG J L. Research on disruptive technology identification based on cross-domain patents: taking the field of artificial intelligence as an example[J]. Information studies: theory & application, 2023, 46(3): 174-182.)
[32] BLEI D M, NG A Y, JORDAN M I. Latent Dirichlet allocation[J]. Journal of machine learning research, 2003, 3(4/5): 993-1022.
[33] 李牧南, 王雯殊. 基于文本挖掘的人工智能科学主题演进研究[J]. 情报杂志, 2020, 39(6): 82-88. (LI M N, WANG W S. Research on the topic evolution of artificial intelligence based on text mining[J]. Journal of intelligence, 2020, 39(6): 82-88.)
[34] 吕鲲, 陈箫羽, 靖继鹏. 基于组合分词方法和LDA模型的区块链金融产业关键技术识别研究[J]. 图书情报工作, 2022, 66(19): 110-121. (LV K, CHEN X Y, JING J P. Research on identification of key technologies in blockchain financial industry based on combined word segmentation method and LDA model[J]. Library and information service, 2022, 66(19): 110-121.)
[35] MIKOLOV T, CORRADO G, CHEN K, et al. Efficient estimation of word representations in vector space[J]. arXiv:1301.3781, 2013.
[36] 李牧南, 王良, 赖华鹏. 中文科技政策文本分类:增强的TextCNN视角[J]. 科技管理研究, 2023, 43(2): 160-166. (LI M N, WANG L, LAI H P. Text classification of Chinese S&T policies: enhanced TextCNN perspective[J]. Science and technology management research, 2023, 43(2): 160-166.)
[37] 丁敬达, 陈一帆, 刘超, 等. 基于共词和Word2Vec加权向量的文献—主题语义匹配分析方法[J]. 图书情报工作, 2022, 66(12): 108-116. (DING J D, CHEN Y F, LIU C, et al. An article-topic semantic matching analysis method based on co-word and weighted Word2Vec[J]. Library and information service, 2022, 66(12): 108-116.)
[38] 靳嘉林, 王曰芬, 巴志超, 等. 基金项目研究的主题挖掘与动态演化分析——以美国NSF数据中AI领域为例[J]. 情报学报, 2022, 41(9): 967-979. (JIN J L, WANG Y F, BA Z C, et al. Topic mining and dynamic evolution analysis of funding projects: case studies of AI field in NSF data[J]. Journal of the China Society for Scientific and Technical Information, 2022, 41(9): 967-979.)
[39] GROVER A, LESKOVEC J J A. Node2Vec: scalable feature learning for networks[J]. arXiv:1607.00653, 2016.
[40] 岳丽欣, 刘自强, 刘春江, 等. 融合引用和文本特征的技术创新路径识别研究[J]. 图书情报工作, 2023, 67(3): 49-60. (YUE L X, LIU Z Q, LIU C Q, et al. Research on technology innovation path recognition integrating citation and text features[J]. Library and information service, 2023, 67(3): 49-60.)
[41] 曹琨, 吴新年, 靳军宝, 等. 基于共词和Node2Vec表示学习的新兴技术识别方法[J]. 数据分析与知识发现, 2023, 7(9): 89-99. (CAO K, WU X N, JIN J B, et al. Identification of emerging technology based on co-words and Node2Vec representation learning[J]. Data analysis and knowledge discovery, 2023, 7(9): 89-99.)
[42] DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[J]. arXiv:1810.04805, 2018.
[43] VASWANI A, SHAZEER N, Parmar N, et al. Attention is all you need[C]//31st annual conference on neural information processing systems (NIPS). La Jolla: Neural Information Processing Systems, 2017.
[44] VELIKOVI P, CUCURULL G, CASANOVA A, et al. Graph attention networks[J]. arXiv, 2017. arXiv:1710.10903
[45] ISMAGILOVA E, HUGHES L, DWIVEDI Y K, et al. Smart cities: advances in research-an information systems perspective[J]. International journal of information management, 2019, 47: 88-100.
[46] AAZAM M, ZEADALLY S, HARRAS K A. Deploying fog computing in Industrial Internet of Things and Industry 4.0[J]. IEEE transactions on industrial informatics, 2018, 14(10): 4674-4682.
[47] KHAN W Z, REHMAN M H, ZANGOTI H M, et al. Industrial Internet of things: recent advances, enabling technologies and open challenges[J]. Computers & electrical engineering, 2020, 81: 106522.
[48] 王昶, 邓婵, 何琪, 等. 工业互联网使用如何促进中小企业智能化转型:驱动因素与赋能机制[J]. 科技进步与对策, 2024, 41(3): 103-113. (WANG C, DENG C, HE Q, et al. How the use of industrial Internet promotes intelligent transformation of SMES: driving factors and enabling mechanism[J]. Science & technology progress and policy, 2024, 41(3): 103-113.)
[49] 吴鸣然, 黄卫东. 智慧城市建设对城市绿色创新效率的直接影响与扩散效应——基于173个城市的“准自然实验”[J]. 软科学, 2024, 38(3): 29-36. (WU M R, HUANG W D. The direct and spillover effects of smart city policy on urban green innovation efficiency: a quasi-natural experiment based on 173 cities[J]. Soft science, 2024, 38(3): 29-36.)
[50] HEIDARI A, NAVIMIPOUR N J, UNAL M. Applications of ML/DL in the management of smart cities and societies based on new trends in information technologies: a systematic literature review[J]. Sustainable cities and society, 2022, 85: 104089.
[51] DEEPA N, PHAM Q V, NGUYEN D C, et al. A survey on blockchain for big data: approaches, opportunities, and future directions[J]. Future generation computer systems-the international journal of e-science, 2022, 131: 209-226.
[52] CORALLO A, LAZOI M, LEZZI M, et al. Cybersecurity awareness in the context of the Industrial Internet of Things: a systematic literature review[J]. Computers in industry, 2022, 137: 103614.
[53] 李牧南, 王业信. 基于LDA-KeyBERT模型的技术预见:以工业互联网为例[J]. 创新科技, 2023, 23(7): 53-65. (LI M N, WANG Y X. Technology foresight based on the LDA-KeyBERT model: an instance of industrial Internet[J]. Innovation science and technology, 2023, 23(7): 53-65.)
[54] 李牧南, 赖华鹏. 基于专利文本挖掘的智慧城市技术热点分析[J]. 科技管理研究, 2023, 43(9): 132-139. (LI M N, LAI H P. Analyzing technology hotspots on smart-city based on mining patent text[J]. Science and technology management research, 2023, 43(9): 132-139.)
文章导航

/