专题:突破性/颠覆性技术识别

跨领域颠覆性技术主题识别研究——以脑科学技术为例

  • 许佳琪 ,
  • 汪雪锋 ,
  • 陈虹枢 ,
  • 雷鸣
展开
  • 北京理工大学管理学院 北京 100081
许佳琪,博士研究生;汪雪锋,教授,博士,博士生导师,通信作者,E-mail:wxf5122@bit.edu.cn;陈虹枢,助理教授,博士,博士生导师;雷鸣,博士研究生。

收稿日期: 2023-12-25

  修回日期: 2024-02-26

  网络出版日期: 2024-07-30

基金资助

本文系国家自然科学基金面上项目“生物医学领域潜在颠覆性技术识别方法研究”(项目编号:72074020)和国家自然科学基金青年项目“多源异质网络视角下产学研合作产生机理及潜在机会发现研究”(项目编号:72004009)研究成果之一。

Research on Cross Domain Disruptive Technology Theme Identification: A Case Study of Brain Science

  • Xu Jiaqi ,
  • Wang Xuefeng ,
  • Chen Hongshu ,
  • Lei Ming
Expand
  • School of Management, Beijing Institute of Technology, Beijing 100081

Received date: 2023-12-25

  Revised date: 2024-02-26

  Online published: 2024-07-30

Supported by

This work is supported by the general program of National Natural Science Foundation of China titled “Methods for Identifying Potentially Disruptive Technologies in the Biomedical Field” (Grant No. 72074020) and the youth program of National Natural Science Foundation of China titled “Research on University-industry Collaboration Causing Mechanism and Potential Cooperative Opportunity Discovery in Multi-Source Heterogeneous Networks” (Grant No. 72004009).

摘要

[目的/意义] 颠覆性技术是引领当今世界经济发展的关键驱动力,跨领域颠覆性技术往往对技术的发展具有更加深刻的价值和意义,预先科学准确地识别跨领域颠覆性技术,是超前捕获技术发展方向并抢占科技竞争主动权的关键。[方法/过程] 基于跨领域融合创新思想,构建跨领域颠覆性技术主题的识别方法和总体框架。具体采用ISI-OST-INPI分类体系与Rao-Stirling多样性指数,综合考虑专利所涉及技术领域的多样性、均匀度和差异性,对跨领域专利进行筛选后,运用文本挖掘和社会网络分析方法,构建跨领域专利关键词时序共现网络并聚类形成技术主题,并从网络内部知识流动的角度,结合跨领域颠覆性技术特征构建多维测度指标与综合得分,识别跨领域颠覆性技术主题。最后选取脑科学专利开展实证研究。[结果/结论] 结果表明,类脑器官培育和神经干细胞的移植分化、脑机接口技术及应用、神经形态计算3个技术主题具有较强的跨领域颠覆性特征,并通过资料验证法进行结果验证,证明识别方法的可行性和有效性。

本文引用格式

许佳琪 , 汪雪锋 , 陈虹枢 , 雷鸣 . 跨领域颠覆性技术主题识别研究——以脑科学技术为例[J]. 图书情报工作, 2024 , 68(15) : 44 -57 . DOI: 10.13266/j.issn.0252-3116.2024.15.004

Abstract

[Purpose/Significance] Disruptive technology is a key driving force that leads the development of the world economy today. Cross domain disruptive technology often has more profound value and significance for the development of technology. Accurately identifying cross domain disruptive technology in advance is the key to capturing the direction of technological development and seizing the initiative in scientific and technological competition. [Method/Process] Based on the idea of cross domain fusion innovation, this article constructed a method for identifying disruptive technology themes across domains. Firstly, it adopted the ISI-OST-INPI classification system and Rao-Stirling diversity index, comprehensively considered the diversity, uniformity, and differences of the technical fields involved in the patents, and screened cross domain patents. Secondly, using text mining and social network analysis methods, it constructed a cross domain patent keyword temporal co-occurrence network and clustered it to form technical themes. Furthermore, it constructed multidimensional measurement indicators and comprehensive scores from the perspective of knowledge flow within the network, combined with the characteristics of cross domain disruptive technologies, to identify cross domain disruptive technology themes. Finally, it selected brain science patents for empirical research. [Result/Conclusion] The results indicate that the cultivation of brain-like organs and the transplantation of neural stem cells, brain computer interface technology and applications, and neural morphology computing have strong cross domain disruptive characteristics. The feasibility and effectiveness of the method have been verified through data validation.

参考文献

[1] BOWER J L, CHRISTENSEN C M. Disruptive technologies: catching the wave[J]. Harvard business review, 1995, 73(1): 75-76.
[2] CHRISTENSEN C M. The innovators dilemma: when new technologies cause great firms to fail[M]. Boston: Harvard Business School Press, 1997.
[3] 李平. 颠覆性创新的机理性研究[M]. 北京: 经济管理出版社, 2018: 10-11. (LI P. Research on the mechanism of disruptive innovation[M]. Beijing: Economic Management Press, 2018: 10-11.)
[4] NAGY D, SCHUESSLER J, DUBINSKY A. Defining and identifying disruptive innovations[J]. Industrial marketing management, 2016, 57: 119-126.
[5] 苏成, 赵志耘, 赵筱媛, 等. 颠覆性技术新阐释:概念、内涵及特征[J]. 情报学报, 2021, 40(12): 1253-1262. (SU C, ZHAO Z Y, ZHAO X Y, et al. New explanation on disruptive technology: concept, connotation and features [J]. Journal of the China Society for Scientific and Technical Information, 2021, 40(12): 1253-1262.)
[6] 梁镇涛, 毛进, 李纲. 融合“科学-技术”知识关联的高颠覆性专利预测方法[J]. 情报学报, 2023, 42(6): 649-662. (LIANG Z T, MAO J, LI G. A highly disruptive patent prediction method integrating “science-technology” knowledge association [J]. Journal of the China Society for Scientific and Technical Information, 2023, 42(6): 649-662.)
[7] 李晓龙, 鲁平, 李存斌. 基于Delphi和DEMATEL法影响国网的颠覆性创新技术影响因素综合排序分析[J]. 科技管理研究, 2017, 37(6): 127-133. (LI X L, LU P, LI C B. A comprehensive ranking analysis of the influencing factors of disruptive innovation technology on State Grid based on Delphi and DEMATEL methods[J]. Science and technology management research, 2017, 37(6): 127-133.)
[8] 张欣. 颠覆性技术识别方法述评[J]. 图书情报工作, 2020, 64(17): 145-152. (ZHANG X. Review of disruptive technology identification methods[J]. Library and information service, 2020, 64(17): 145-152.)
[9] DIXON T, EAMES M, BRITNELL J, et al. Urban retrofitting: identifying disruptive and sustaining technologies using performative and foresight techniques[J]. Technological forecasting and social change, 2014, 89(11): 131-144.
[10] VOJAK B A, CHAMBERS F A. Road mapping disruptive technical threats and opportunities in complex, technology based subsystems: the SAILS methodology[J]. Technological forecasting and social change, 2004, 71(1-2): 121-139.
[11] 王知津, 周鹏, 韩正彪. 基于情景分析法的技术预测研究[J]. 图书情报知识, 2013(5): 115-122. (WANG Z J, ZHOU P, HAN Z B. Research on technology forecast based on scenario analysis[J]. Documentation, information & knowledge, 2013(5): 116-122.)
[12] 侯广辉, 廖桂铭, 王刚. 基于突变级数的颠覆性技术识别模型构建及实证研究[J]. 情报杂志, 2021, 40(10): 7-14. (HOU G H, LIAO G M, WANG G. Construction and empirical study of disruptive technology identification model based on mutation series [J]. Journal of intelligence, 2021, 40(10): 7-14.)
[13] 黄鲁成, 成雨, 吴菲菲, 等. 关于颠覆性技术识别框架的探索[J]. 科学学研究, 2015, 33(5): 654-664. (HUANG L C, CHENG Y, WU F F, et al. Exploration of a framework for identifying disruptive technologies[J]. Studies in science of science, 2015, 33(5): 654-664.)
[14] CHENG Y, HUANG L, LI X, et al. Forecasting of potential impacts of disruptive technology in promising technological areas: elaborating the SIRS epidemic model in RFID technology[J]. Technological forecasting and social change, 2017, 117(4): 170-183.
[15] CHEN C, ZHANG J, GUO R S. The D-Day, V-Day, and bleak days of a disruptive technology: a new model for ex-ante evaluation of the timing of technology disruption[J]. European journal of operational research, 2016, 251(2): 562-574.
[16] GUO J, PAN J F, GUO J X, et al. Measurement framework for assessing disruptive innovations[J]. Technological forecasting and social change, 2019, 139(2): 250-265.
[17] GANGULY A, NILCHIANI R, FARR J V. Defining a set of metrics to evaluate the potential disruptiveness of a technology[J]. Engineering management journal, 2010, 22(1): 34-44.
[18] DOTSIKA F, WATKINS A. Identifying potentially disruptive trends by means of keyword network analysis[J]. Technological forecasting and social change, 2017, 119: 114-127.
[19] MOMENI A, ROST K. Identification and monitoring of possible disruptive technologies by patent-development paths and topic modeling[J]. Technological forecasting and social change, 2016, 104: 16-29.
[20] 于光辉, 宁钟, 李昊夫. 基于专利和Bass模型的颠覆性技术识别方法研究[J]. 科学学研究, 2020(9): 1-12. (YU G H, NING Z, LI H F. Research on disruptive technology identification methods based on patents and bass models[J]. Studies in science of science, 2020(9): 1-12.)
[21] FLEMING L. Recombinant uncertainty in technological search[J]. Management science, 2001, 47(1): 117-132.
[22] KARVONEN M, KÄSSI T. Patent citations as a tool for analysing the early stages of convergence[J]. Technological forecasting and social change, 2013, 80(6): 1094-1107.
[23] 赵玉桐, 杨建林. 基于跨领域专利的颠覆性技术识别研究——以人工智能领域为例[J]. 情报理论与实践, 2023, 46(3): 174-182. (ZHAO Y T, YANG J L. Research on disruptive technology identification based on cross domain patents: taking the field of artificial intelligence as an example[J]. Information studies: theory & application, 2023, 46(3): 174-182.)
[24] TORTORIELLO M, MCEVILY B, KRACKHARDT D. Being a catalyst of innovation: the role of knowledge diversity and network closure[J]. Organization science, 2015, 26(2): 423-438.
[25] 李乾瑞, 郭俊芳, 黄颖, 等. 基于专利计量的颠覆性技术识别方法研究[J]. 科学学研究, 2021, 39(7): 1166-1175. (LI Q R, GUO J F, HUANG Y, et al. Research on disruptive technology identification methods based on patent metrology[J]. Studies in science of science, 2021, 39(7): 1166-1175.)
[26] 李乾瑞, 郭俊芳, 黄颖, 等. 基于突变-融合视角的颠覆性技术主题演化研究[J]. 科学学研究, 2021, 39(12): 2129-2139. (LI Q R, GUO J F, HUANG Y, et al. Research on the evolution of disruptive technology themes from the perspective of mutation fusion[J]. Studies in science of science, 2021, 39(12): 2129-2139.)
[27] 黄鲁成, 蒋林杉, 吴菲菲. 萌芽期颠覆性技术识别研究[J]. 科技进步与对策, 2019, 36(1): 10-17. (HUANG L C, JIANG L S, WU F F. Research on the identification of disruptive technologies during the embryonic stage[J]. Science & technology progress and policy, 2019, 36(1): 10-17.)
[28] 苗红, 王晓宇, 黄鲁成, 等. 基于专利的跨领域技术特征测度与分析[J]. 情报学报, 2015, 34(5): 484-492. (MIAO H, WANG X Y, HUANG L C, et al. Measurement and analysis of cross domain technical features based on patents[J]. Journal of the China Society for Scientific and Technical Information, 2015, 34(5): 484-492.)
[29] 王康, 陈悦. 技术融合视角下基于专利的颠覆性技术识别研究[J]. 情报杂志, 2022, 41(4): 29-36, 134. (WANG K, CHEN Y. Research on patent based disruptive technology identification from the perspective of technology fusion[J]. Journal of intelligence, 2022, 41(4): 29-36, 134.)
[30] 曹晓阳, 白光祖. 以颠覆性技术创新培育发展新质生产力[N]. 科技日报, 2024-02-22(8). (CAO X Y, BAI G Z. Cultivate and develop new quality productive forces through disruptive technological innovation[N]. Science and technology daily, 2024-02-22(8).)
[31] 李丫丫, 赵玉林. 基于专利的技术融合分析方法及其应用[J]. 科学学研究, 2016, 34(2): 203-211. (LI Y Y, ZHAO Y L. Patent based technology fusion analysis method and application[J]. Studies in science of science, 2016, 34(2): 203-211.)
[32] 黄颖, 张琳, 孙蓓蓓, 等. 跨学科的三维测度——外部知识融合、内在知识会聚与科学合作模式[J]. 科学学研究, 2019, 37(1): 25-35. (HUANG Y, ZHANG L, SUN B B, et al. Cross disciplinary three-dimensional measurement: external knowledge fusion, internal knowledge convergence, and scientific cooperation models[J]. Studies in science of science, 2019, 37(1): 25-35.)
[33] 韩正琪, 刘小平, 寇晶晶. 基于Rao-Stirling指数和LDA模型的领域学科交叉主题识别——以纳米科技为例[J]. 情报科学, 2020, 38(2): 116-124. (HAN Z Q, LIU X P, KOU J J. Domain disciplinary cross topic recognition based on Rao Stirling index and LDA model: taking nanotechnology as an example[J]. Information science, 2020, 38(2): 116-124.)
[34] LEYDESDORFF L, RAFOLS I. Indicators of the interdisciplinarity of journals: diversity, centrality, and citations[J]. Journal of informetrics, 2011, 5(1): 87-100.
[35] LEYDESDORFF L, KUSHNIR D, RAFOLS I. Interactive overlay maps for US patent (USPTO) data based on international patent classification (IPC) [J]. Scientometrics, 2014, 98(3): 1583-1599.
[36] 陈育新, 卢俊, 韩毅. 基于专利文献的颠覆性技术识别研究——以人工智能为例[J]. 情报学报, 2022, 41(11): 1124-1133. (CHEN Y X, LU J, HAN Y. Research on disruptive technology identification based on patent literature: taking artificial intelligence as an example[J]. Journal of the China Society for Scientific and Technical Information, 2022, 41(11): 1124-1133.)
[37] 柯建坤, 许忠好. Louvain算法与K均值聚类算法的比较研究[J]. 应用概率统计, 2022, 38(5): 780-790. (KE J K, XU Z H. Comparative study of Louvain algorithm and K-means clustering algorithm [J]. Chinese journal of applied probability and statistics, 2022, 38(5): 780-790.)
[38] LANCICHINETTI A, FORTUNATO S. Community detection algorithms: a comparative analysis[J]. Physical Review E, 2009, 80(5): 11-21.
[39] DONNA J K, ABDUL A, SHAKER A Z. Where do breakthroughs come from? Characteristics of high-potential inventions[J]. Journal of product innovation management, 2013, 30(6): 1212–1226.
[40] MALVA D, KELCHTERMANS A, LETEN B, et al. Basic science as a prescription for breakthrough inventions in the pharmaceutical industry[J]. The journal of technology transfer, 2015, 40(4): 670-695.
[41] SCHOENMAKERS W, DUYSTERS G. The technological origins of radical inventions[J]. Research policy, 2010, 39(8): 1051-1059.
[42] DAHLIN K B, BEHRENS D M. When is an invention really radical? Defining and measuring technological radicalness[J]. Research policy, 2005, 34(5): 717-737.
[43] CARLO J L, LYYTINEN K, ROSE G M. A knowledge-based model of radical innovation in small software firms[J]. MIS quarterly, 2012, 36(3): 865-895.
[44] AN X, LI J, XU S, et al. An improved patent similarity measurement based on entities and semantic relations[J]. Journal of informetrics, 2021, 15(2): 1-16.
[45] GIORDANO V, CHIARELLO F, MELLUSO N, et al. Text and dynamic network analysis for measuring technological convergence: A case study on defense patent data[J]. IEEE transactions on engineering management, 2023, 70(4): 1490-1503.
[46] YUN J, GEUM Y. Analysing the dynamics of technological convergence using a co-classification approach: a case of healthcare services[J]. Technology analysis and strategic management, 2019, 31(12): 1412-1429.
[47] 张齐. 基于熵的复杂网络结构特性研究[D]. 重庆: 西南大学, 2017.(ZHANG Q. Research on the characteristics of complex network structures based on entropy[D]. Chongqing: Southwest University, 2017.)
[48] 谭跃进, 吴俊. 网络结构熵及其在非标度网络中的应用[J].系统工程理论与实践, 2004, 24(6): 1-3. (TAN Y J, WU J. Network structure entropy and its application to scale-free networks[J]. Systems engineering-theory & practice, 2004, 24(6): 1-3.)
[49] 田雪姣, 鲍新中, 杨大飞, 等. 基于熵权-TOPSIS-德尔菲法的核心技术识别研究——以芯片产业技术为例[J]. 情报杂志, 2022, 41(8): 69-74, 86. (TIAN X J, BAO X Z, YANG D F, et al. Research on core technology identification based on entropy weight TOPSIS delphi method: taking chip industry technology as an example[J]. Journal of intelligence, 2022, 41(8): 69-74, 86.)
[50] 蒲慕明. 脑科学研究的三大发展方向[J]. 中国科学院院刊, 2019, 34(7): 807-813. (PU M M. The three major development directions of brain science research[J]. Journal of the Chinese Academy of Sciences, 2019, 34(7): 807-813.)
[51] 阮梅花, 袁天蔚, 王慧媛, 等.神经科学和类脑人工智能发展:未来路径与中国布局——基于业界百位专家调研访谈[J]. 生命科学, 2017, 29(2): 97-113. (RUAN M H, YUAN T W, WANG H Y, et al. Development of neuroscience and brain like artificial intelligence: future paths and China's layout: based on research interviews with 100 industry experts[J]. Chinese bulletin of life sciences, 2017, 29(2): 97-113.)
[52] 韩芳, 张生太, 冯凌子, 等. 基于专利文献技术融合测度的突破性创新主题识别——以太阳能光伏领域为例[J]. 数据分析与知识发现, 2021, 5(12): 137-147. (HAN F, ZHANG S T, FENG L Z, et al. Breakthrough innovation theme identification based on patent literature technology fusion measurement: taking the solar photovoltaic field as an example[J]. Data analysis and knowledge discovery, 2021, 5(12): 137-147.)
[53] 王学生, 王革. 中位数检验法在偏态分布资料中应用[J]. 中国公共卫生, 2001(5): 81-82. (WANG X S, WANG G. Application of median test method in skewed distribution data[J]. Chinese journal of public health, 2001(5): 81-82.)
[54] NORTON A P, KEELEY M. Optimal fixed-size windows and dynamic asset allocation[J]. Journal of portfolio management, 2009, 35(2): 58-68.
[55] 杨仲基, 王宏起, 王珊珊, 等. 基于动态网络方法的产业专利合作态势研究——以中国石墨烯产业为例[J]. 科技进步与对策, 2018, 35(9): 59-65. (YANG Z J, WANG H Q, WANG S S, et al. A Study on the situation of industrial patent cooperation based on dynamic network method - taking China's graphene industry as an example[J]. Science & technology progress and policy, 2018, 35(9): 59-65.)
[56] 王淑娜. 类脑用于脑卒中移植治疗及人源化模型构建的研究[D]. 上海:中国人民解放军海军军医大学, 2019. (WANG S N. A study on the application of brain analogues in stroke transplantation treatment and the construction of humanized models [D]. Shanghai: Naval Medical University, 2019.)
[57] SHIH J J, KRUSIENSKI D J, WOLPAW J R. Brain-computer interfaces in medicine[J]. Mayo clinic proceedings, 2012, 87(3): 268-279.
[58] 黄铁军, 施路平, 唐华锦, 等. 多媒体技术研究:2015——类脑计算的研究进展与发展趋势[J]. 中国图象图形学报, 2016, 21(11): 1411-1424. (HUANG T J, SHI L P, TANG H J, et al. Research on multimedia technology: 2015- research progress and development trends of brain like computing[J]. Journal of image and graphics, 2016, 21(11): 1411-1424.)
[59] 项水英, 宋紫薇, 高爽, 等. 光神经形态计算研究进展与展望(特邀)[J]. 光子学报, 2021, 50(10): 40-56. (XIANG S Y, SONG Z W, GAO S, et al. Progress and prospects of photoneural morphology calculation research (invited)[J]. Acta photonica sinica, 2021, 50(10): 40-56.)
[60] 赵地, 肖立. 基于神经形态计算的新一代感知系统研究进展[J]. 人工智能, 2020(1): 32-35. (ZHAO D, XIAO L. Research progress in the new generation perception system based on neuromorphic computing[J]. AI-View, 2020(1): 32-35.)
[61] 陈怡然, 李海, 陈逸中, 等. 神经形态计算发展现状与展望[J]. 人工智能, 2018(2): 46-58. (CHEN Y R, LI H, CHEN Y Z. Current status and prospects of neuromorphic computing development[J]. AI-View, 2018(2): 46-58.)
文章导航

/