[1] 单宇, 刘爽, 马宝龙. 国产替代过程中关键核心技术的适应性重构机制——基于海信集团1969~2022视像技术的纵向案例研究[J]. 管理世界, 2023, 39(4): 80-100. (SHAN Y, LIU S, MA B L. Adaptive reconfiguration mechanism of key core technologies in the process of domestic substitution: a longitudinal case study based on Hisense group’s 1969-2022 video technology[J]. Journal of management world, 2023, 39(4): 80-100.)
[2] 邓建军, 刘安蓉, 曹晓阳, 等. 颠覆性技术早期识别方法框架研究——基于科学端的视角[J]. 中国科学院院刊, 2022, 37(5): 674-684. (DENG J J, LIU A R, CAO X Y, et al. Methodological framework of identifying disruptive technologies on emerging stage: Based on science[J]. Bulletin of Chinese Academy of Sciences, 2022, 37(5): 674-684.)
[3] PARRAGUEZ P, ŠKEC S, CARMO D O, et al. Quantifying technological change as a combinatorial process[J]. Technological forecasting and social change, 2020, 151: 119803.
[4] MAINE E, THOMAS V J, UTTERBACK J. Radical innovation from the confluence of technologies: Innovation management strategies for the emerging nanobiotechnology industry[J]. Journal of engineering and technology management, 2014, 32: 1-25.
[5] BOWER J L, CHTISTENSEN C M. Disruptive technologies: catching the wave[J]. Harvard business review, 1995, 73(1): 43-53.
[6] 郑彦宁, 袁芳. 颠覆性技术研发管理研究[J].科研管理, 2021, 42(2): 12-19. (ZHENG Y N,YUAN F. An analysis of disruptive technology management[J]. Science research management, 2021, 42(2): 12-19.)
[7] 王康, 陈悦, 宋超, 等. 颠覆性技术:概念辨析与特征分析[J]. 科学学研究, 2022, 40(11): 1937-1946. (WANG K, CHEN Y, SONG C, et al. Disruptive technology: concept discrimination and characteristics analysis[J]. Studies in science of science, 2022, 40(11): 1937-1946.)
[8] 乔亚丽, 黄颖, 张硕, 等. 多维视角下颠覆性技术识别:研究进展与未来思考[J].情报杂志, 2022, 41(8): 45-52. (QIAO Y L, HUANG Y, ZHANG S, et al. The identification of disruptive technology from a multi-dimensional perspective: research progress and future prospects[J]. Journal of intelligence, 2022, 41(8): 45-52.)
[9] DANNEELS E. Disruptive technology reconsidered: a critique and research agenda[J]. Journal of product innovation management, 2004, 21(4): 246-258.
[10] 苏成, 赵志耘, 赵筱媛, 等. 颠覆性技术新阐释:概念、内涵及特征[J].情报学报, 2021, 40(12): 1253-1262. (SU C, ZHAO Z Y, ZHAO X Y, et al. New explanation on disruptive technology: concept, connotation and features[J].Journal of the China Society for Scientific and Technical Information, 2021, 40(12): 1253-1262.)
[11] FUNK R J, OWEN-SMITH J. A dynamic network measure of technological change[J]. Management science, 2017, 63(3): 791-817.
[12] WU L, WANG D, EVANS J A. Large teams develop and small teams disrupt science and technology[J]. Nature, 2019, 566(7744): 378-382.
[13] 梁镇涛, 毛进, 李纲. 融合“科学-技术”知识关联的高颠覆性专利预测方法[J].情报学报, 2023, 42(6): 649-662. (LIANG Z T, MAO J, LI G. Integrating science-technology knowledge linkage to predict disruptive patents[J]. Journal of the China Society for Scientific and Technical Information, 2023, 42(6): 649-662.)
[14] ZHOU Y, DONG F, LIU Y, et al. A deep learning framework to early identify emerging technologies in large-scale outlier patents: an empirical study of CNC machine tool[J]. Scientometrics, 2021, 126: 969-994.
[15] ROSENBERG N. Technological change in the machine tool industry, 1840–1910[J]. The journal of economic history, 1963, 23(4): 414-443.
[16] SCHOENMAKERS W, DUYSTERS G. The technological origins of radical inventions[J]. Research policy, 2010, 39(8): 1051-1059.
[17] 王康, 陈悦. 技术融合视角下基于专利的颠覆性技术识别研究[J].情报杂志, 2022, 41(4): 29-36, 134. (WANG K, CHEN Y. Research on disruptive technology identification based on patent from the perspective of technology convergence[J]. Journal of intelligence, 2022, 41(4): 29-36, 134.)
[18] CHO J H, LEE J, SOHN S Y. Predicting future technological convergence patterns based on machine learning using link prediction[J]. Scientometrics, 2021, 126: 5413-5429.
[19] WANG Z, PORTER A L, WANG X, et al. An approach to identify emergent topics of technological convergence: a case study for 3D printing[J]. Technological forecasting and social change, 2019, 146: 723-732.
[20] CAVIGGIOLI F. Technology fusion: identification and analysis of the drivers of technology convergence using patent data[J]. Technovation, 2016, 55: 22-32.
[21] 纪亚琨, 余翔, 张奔, 等. 专利网络视角下的潜在颠覆性技术识别——以自动驾驶领域为例[J]. 情报杂志, 2022, 41(12): 46-50, 139. (JI Y K, YU X, ZHANG B, et al. Identifying potentially disruptive technologies from the perspective of patent networks: the field of self-driving vehicles as an example[J]. Journal of intelligence, 2022, 41(12): 46-50, 139.)
[22] ARIK S Ö, PFISTER T. Tabnet: attentive interpretable tabular learning[C]//Proceedings of the AAAI conference on artificial intelligence. Palo Alto: AAAI, 2021, 35(8): 6679-6687.
[23] 罗瑞, 许海云, 刘亚辉. 基于结构熵的科学突破主题识别——以基因工程疫苗领域为例[J]. 情报理论与实践, 2021, 44(5): 106-114, 99. (LUO R, XU H Y, LIU Y H. Identifying scientific breakthrough topics using structure entropy: taking the study field of genetic engineering vaccines as an example[J]. Information studies: theory & application, 2021, 44(5): 106-114, 99.)
[24] LEE W S, HAN E J, SOHN S Y. Predicting the pattern of technology convergence using big-data technology on large-scale triadic patents[J]. Technological forecasting and social change, 2015, 100: 317-329.
[25] PARK Y, YOON J. Application technology opportunity discovery from technology portfolios: use of patent classification and collaborative filtering[J]. Technological forecasting and social change, 2017, 118: 170-183.
[26] HAGBERG A, SWART P, CHULT D. Exploring network structure, dynamics, and function using NetworkX[R]. Los Alamos: Los Alamos National Lab, 2008.
[27] 王超, 许海云, 武华维, 等. 基于动态结构熵的颠覆性技术知识网络扩散特征识别方法研究[J]. 图书情报工作, 2023, 67(24): 54-71. (WANG C, XU H Y, WU H W, et al. Research on the method of identifying disruptive technology knowledge networks diffusion characteristics based on dynamic structure entropy[J]. Library and information service, 2023, 67(24): 54-71.)
[28] XU H, LUO R, WINNINK J, et al. A methodology for identifying breakthrough topics using structural entropy[J]. Information processing & management, 2022, 59(2): 102862.
[29] 张齐. 基于熵的复杂网络结构特性研究[D]. 重庆:西南大学, 2017. (ZHANG Q. Structure analysis of complex networks based on entropy[D]. Chongqing: Southwest University, 2017.)
[30] BORNMANN L, TEKLES A. Disruptive papers published in scientometrics[J]. Scientometrics, 2019, 120: 331-336.
[31] HIGHAM K, DE R G, JAFFE A B. Patent quality: towards a systematic framework for analysis and measurement[J]. Research policy, 2021, 50(4): 104215.
[32] LEE C, KWON O, KIM M, et al. Early identification of emerging technologies: a machine learning approach using multiple patent indicators[J]. Technological forecasting and social change, 2018, 127: 291-303.
[33] FLEMING L, MINGO S, CHEN D. Collaborative brokerage, generative creativity, and creative success[J]. Administrative science quarterly, 2007, 52(3): 443-475.
[34] 张彪, 吴红, 高道斌, 等. 基于潜在高被引论文与高价值专利的创新前沿识别研究[J]. 图书情报工作, 2022, 66(18): 72-83. (ZHANG B, WU H, GAO D B, et al. Research on identification of innovation fronts based on potentially high cited papers and high value patents[J]. Library and information service, 2022, 66(18): 72-83.)
[35] HARHOFF D, SCHERER F M, VOPEL K. Citations, family size, opposition and the value of patent rights[J]. Research policy, 2003, 32(8): 1343-1363.
[36] COZZENS S, GATCHAIR S, KANG J, et al. Emerging technologies: quantitative identification and measurement[J]. Technology analysis & strategic management, 2010, 22(3): 361-376.
[37] VAN Z N, VAN P D L P B. The vulnerability of patent value determinants[J]. Economics of innovation and new technology, 2011, 20(3): 283-308.
[38] MA Z, LEE Y. Patent application and technological collaboration in inventive activities: 1980–2005[J]. Technovation, 2008, 28(6): 379-390.
[39] MEYER M. Are patenting scientists the better scholars? an exploratory comparison of inventor-authors with their non-inventing peers in nano-science and technology[J]. Research policy, 2006, 35(10): 1646-1662.
[40] BREITZMAN A, THOMAS P. Inventor team size as a predictor of the future citation impact of patents[J]. Scientometrics, 2015, 103(2): 631-647.
[41] HU Z, CUI J, LIN A. Identifying potentially excellent publications using a citation-based machine learning approach[J]. Information processing & management, 2023, 60(3): 103323.
[42] MCDONNELL K, MUTPHY F, SHEEHAN B, et al. Deep learning in insurance: accuracy and model interpretability using tabnet[J]. Expert systems with applications, 2023, 217: 119543.
[43] JOSEPH L P, JOSEPH E A, PRASAD R. Explainable diabetes classification using hybrid bayesian-optimized tabnet architecture[J]. Computers in biology and medicine, 2022, 151: 106178.
[44] FORMAN G. An extensive empirical study of feature selection metrics for text classification[J]. Journal of machine learning research, 2003, 3: 1289-1305.
[45] 张辉, 刘鹏, 姜钧译, 等. ChatGPT:从技术创新到范式革命[J]. 科学学研究, 2023, 41(12): 2113-2121. (ZHANG H, LIU P, JIANG J Y, et al. ChatGPT: from technological innovation to paradigm revolution[J]. Studies in science of science, 2023, 41(12): 2113-2121.)
[46] TSAY M Y, LIU Z W. Analysis of the patent cooperation network in global artificial intelligence technologies based on the assignees[J]. World patent information, 2020, 63: 102000.
[47] 张嶷, 汪雪锋, 朱东华, 等. “主题词簇”方法研究——英文科技文献主题词清洗、合并与聚类[J]. 科学学研究, 2013, 31(11): 1615-1622. (ZHANG Y, WANG X F, ZHU D H, et al. Term clumping: term cleaning,consolidation and clustering for english ST&I documents[J]. Studies in science of science, 2013, 31(11): 1615-1622.)
[48] 艾瑞咨询研究院. 2020年中国AI+医疗行业报告[EB/OL]. [2024-03-30]. https://www.iresearch.com.cn/Detail/report?id=3722&isfree=0. (iResearch. 2020 China AI+Medical industry report[EB/OL]. [2024-03-30]. https://www.iresearch.com.cn/Detail/report?id=3722&isfree=0.)