[1] 章永宏. 重建客观: 中国大陆精确新闻报道研究[M]. 北京: 中国书籍出版社, 2013: 78. (ZHANG Y H. Rebuilding objectivity: research on accurate news reporting in Chinese mainland [M]. Beijing: China Book Publishing House, 2013: 78.)
[2] 吴振东. 基于图模型聚类的文本摘要方法研究[D]. 杭州: 浙江工商大学, 2015. (WU Z D. Research on text abstraction method based on graph model clustering [D]. Hangzhou: Zhejiang Gongshang University, 2015.)
[3] XIONG A, YU X, LIU D, Tian H. News keywords extraction algorithm based on TextRank and classified TF-IDF[C]// 2020 International wireless communications and mobile computing. Limassol, Cyprus: IEEE, 2020: 1364-1369.
[4] RUIP S, CORDEIR M, BRAZDIL P, et al. Incremental TextRank-automatic keyword extraction for text streams[C]//20th International conference on enterprise information systems. Funchal, Madeira: ICEIS, 2018: 363-370.
[5] 于广川, 贺瑞芳, 刘洋, 等. 融合语境分析的时序推特摘要方法[J]. 软件学报, 2017, 28(10): 20. (YU G C, HE R F, LIU Y, et al. A temporal Twitter summarization method integrating contextual analysis [J]. Journal of software, 2017, 28(10): 20.)
[6] 孟彩霞, 张琰, 李楠楠. 基于TextRank的关键词提取改进方法研究[J]. 计算机与数字工程, 2020, 48(12): 3022-3026. (MENG C X, ZHANG Y, LI N N. Research on improved keyword extraction method based on TextRank [J]. Computer and digital engineering, 2020, 48(12): 3022-3026.)
[7] 郝慧丽. 浅谈新闻倾向性与客观报道[J]. 新闻界, 1999(6): 12-13. (HAO H L. On news tendency and objective reporting [J]. Journalism, 1999(6): 12-13.)
[8] 黄荣昌. 论新闻报道中的新闻倾向性[J]. 新闻研究导刊, 2018, 9(18): 90-91. (HUANG R C. On news tendency in news reporting [J]. News research guide, 2018, 9(18): 90-91.)
[9] 蒋建科. 农业科技新闻采访与写作[J]. 科技传播, 2015(22): 1-6. (JIANG J K. Interviewing and writing of agricultural science and technology news [J]. Science and technology communication, 2015(22): 1-6.)
[10] JAMES A, GUPTA R, KHANDELWAL V. Temporal summaries of news topics[C]// Proceedings of the 24th annual international ACM SIGIR conference on Research and development in information retrieval. New York: ACM, 2001: 10-18.
[11] 郭艳卿, 赵锐, 孔祥维, 等. 基于事件要素加权的新闻摘要提取方法[J]. 计算机科学, 2016, 43(1): 237-241. (GUO Y Q, ZHAO R, KONG X W, et al. A news summary extraction method based on event element weighting [J]. Computer science, 2016, 43(1): 237-241.)
[12] 叶雷, 余正涛, 高盛祥, 等. 多特征融合的汉越双语新闻摘要方法[J]. 中文信息学报, 2018, 32(12): 84-91. (YE L, YU Z T, GAO S X, et al. A Chinese Vietnamese bilingual news abstract method with multi feature fusion [J]. Chinese journal of information science, 2018, 32(12): 84-91.)
[13] 李峰, 黄金柱, 李舟军, 等. 使用关键词扩展的新闻文本自动摘要方法[J]. 计算机科学与探索, 2016, 10(3): 372-380. (LI F, HUANG J Z, LI Z J, et al. Automatic summarization method of news text using keyword expansion[J]. Computer science and exploration, 2016, 10(3): 372-380.)
[14] 虞金中, 杨先凤, 陈雁, 等. 基于混合模型的新闻事件要素提取方法[J]. 计算机系统应用, 2018, 27(12): 169-174. (YU J Z, YANG X F, CHEN Y, et al. News event element extraction method based on mixed model[J]. Computer system application, 2018, 27(12): 169-174.)
[15] 严睿. 演进式动态新闻文档摘要生成方法研究[D]. 北京: 北京大学, 2013. (YAN R. Research on the method of generating abstracts of evolutionary dynamic news documents[D]. Beijing: Peking University, 2013.)
[16] ELHADAD M, BARZILAY R. Using lexical chains for text summarization[C]//Intelligent scalable text summarization: workshop held at ACL 1997. Association for Computational Linguistics. Madrid: Springer, 1997: 10-17.
[17] HARANDIZADEH B, PRINISKI J H, MORSTATTER F. Keyword assisted embedded topic model [C]//Proceedings of the Fifteenth ACM international conference on Web search and data mining. New York: Association for Computing Machinery, 2022: 372-380.
[18] 蔡中祥. 基于自动文本摘要的党建新闻标题生成系统的设计与实现[D]. 北京: 中国科学院大学, 2020. (CAI Z X. Design and implementation of news headline generation system for party building based on automatic text summary[D]. Beijing: University of Chinese Academy of Sciences, 2020.)
[19] 苏海菊, 王永成. 中文科技文献文摘的自动编写[J]. 情报学报, 1989, 8(6): 433-439. (SU H J, WANG Y C. Automatic compilation of Chinese scientific and technological literature abstracts[J]. Journal of the China Society for Scientific and Technical Information, 1989, 8(6): 433-439.)
[20] 李小滨, 徐越. 自动文摘系统EAAS[J]. 软件学报, 1991, 2(4): 12-18. (LI X B, XU Y. Automatic abstracting system EAAS [J]. Journal of software, 1991, 2(4): 12-18.)
[21] 王子璇, 乐小虬, 何远标. 基于WMD语义相似度的TextRank改进算法识别论文核心主题句研究[J]. 数据分析与知识发现, 2017, 1(4): 1-8. (WANG Z X, LE X Q, HE Y B. Research on TextRank improved algorithm for identifying core topic sentences of papers based on WMD semantic similarity[J]. Data analysis and knowledge discovery, 2017, 1(4): 1-8.)
[22] 毛进, 陈子洋. 基于深度学习的科技文献摘要结构功能识别研究[J]. 农业图书情报学报, 2022, 34(3): 15-27. (MAO J, CHEN Z Y. Research on structure and function recognition of abstract of scientific and technological literature based on deep learning[J]. Journal of library and information science of agriculture, 2022, 34(3): 15-27.)
[23] 刘家益, 邹益民. 近70年文本自动摘要研究综述[J]. 情报科学, 2017, 35(7): 154-161. (LIU J Y, ZOU Y M. A review of research on automatic text summarization in the past 70 years [J]. Intelligence science, 2017, 35(7): 154-161.)
[24] 李金鹏, 张闯, 陈小军, 等. 自动文本摘要研究综述[J]. 计算机研究与发展, 2021, 58(1): 1-21. (LI J P, ZHANG C, CHEN X J, et al. A review of research on automatic text summarization [J]. Computer research and development, 2021, 58(1): 1-21.)
[25] 王俊丽, 魏绍臣, 管敏. 基于图排序算法的自动文摘研究综述[J]. 计算机科学, 2015, 42(12): 1-7, 39. (WANG J L, WEI S C, GUAN M. A review of research on automatic summarization based on graph sorting algorithms [J]. Computer science, 2015, 42(12): 1-7, 39.)
[26] 赵美玲, 刘胜全, 刘艳, 等. 基于改进K-means聚类与图模型相结合的多文本自动文摘研究[J]. 现代计算机: 中旬刊, 2017(6): 26-30. (ZHAO M L, LIU S Q, LIU Y, et al. Research on multi text automatic abstraction based on the combination of improved K-means clustering and graph model [J]. Modern computer: midday, 2017(6): 26-30.)
[27] LUHN H. The automatic creation of literature abstracts[J]. IBM journal of research and development, 1958, 2(2): 159-165.
[28] JAIME G, JADE G. The use of MMR, diversity-based reranking for reordering documents and producing summaries[C]. Association for Computing Machinery. Proceedings of the 21st annual international ACM SIGIR conference on Research and development in information retrieval. New York: ACM, 1998: 335-336.
[29] HARANDIZADEH B, PRINISKI J H, MORSTATTER F. Keyword assisted embedded topic model [C]//Proceedings of the fifteenth ACM international conference on Web search and data mining. New York: Association for Computing Machinery, 2022: 372-380.
[30] 张璐, 曹杰, 蒲朝仪, 等. 基于词句协同排序的单文档自动摘要算法[J]. 计算机应用, 2017, 37(7): 2100. (ZHANG L, CAO J, PU C Y, et al. A single document automatic summary algorithm based on word sentence collaborative sorting[J]. Computer applications, 2017, 37(7): 2100.)
[31] 李炫. 基于图排序的文档自动摘要[D]. 北京: 中国科学院大学, 2012. (LI X. Automatic document summarization based on graph sorting [D]. Beijing: University of Chinese Academy of Sciences, 2012.)
[32] 李楠. 新闻网页摘要算法的研究及实现[D]. 成都: 西南交通大学, 2018. (LI N. Research and implementation of news web page abstract algorithm [D]. Chengdu: Southwest Jiaotong University, 2018.)
[33] 陈鑫. 基于行块分布函数的通用网页正文抽取算法[R]. 哈尔滨: 哈尔滨工业大学社会计算与信息检索研究中心, 2012. (CHEN X. A general Web page text extraction algorithm based on row block distribution function [R]. Harbin: Social Computing and Information Retrieval Research Center of Harbin Institute of Technology, 2012.)
[34] 程琨, 李传艺, 贾欣欣, 等. 基于改进的MMR算法的新闻文本抽取式摘要方法[J]. 应用科学学报, 2021, 39(3): 443-442. (CHENG K, LI C Y, JIA X X, et al. A news text extraction summarization method based on improved MMR algorithm [J]. Journal of applied sciences, 2021, 39(3): 443-442.)
[35] LIN C Y. ROUGE: a package for automatic evaluation of summaries [C]//Proceedings of the ACL workshop: text summarization braches out 2004. Barcelona: Computer Science, Linguistics, 2004: 74-81.
[36] 何天文, 王红. 基于语义语法分析的中文语句困惑度评价[J]. 计算机应用研究, 2017, 34(12): 3538-3542. (HE T W, WANG H. Evaluation of Chinese sentence confusion based on semantic grammar analysis [J]. Computer application research, 2017, 34(12): 3538-3542.)
[37] 黄迎春, 王港. 基于BM25-IWF特征提取的改进Simhash算法[J]. 移动信息, 2021(5): 7-10. (HUANG Y C, WANG G. Improved Simhash algorithm based on BM25-IWF feature extraction [J]. Mobile information, 2021(5): 7-10.)
[38] WANG Z, LE X, HE Y, et al. Recognizing core topic sentences with improved TextRank algorithm based on WMD semantic similarity[J]. Data analysis and knowledge discovery, 2017, 1(4): 1-8.